HomeMy WebLinkAboutApplication-PermitI
Garfield County
Building & Planning Department
108 8th Street, Suite #401 Glenwood Springs, Co. 81601
Office:970·945·8212 Fax: 970·384-3470
Inspection Line: 970·384-5003
Building Permit No.
Parcel No:
Locality: 2.5 miles north/northeast of CR 211 ___ .-..__,__ ~ .. -----
Job Address: 2700 Clear Creek Rd. g~Beque .... __
Use of Building: -~ele.ctrical building
Owner: Chevron U.S.A. Inc __ ... ____ ... .~~---· .. ···-----· --
Contractor: __ --.. -·---_ Elkhorn _Constructi,o,n, Inc. ____ ._. __ .. __ _
Fees: Plan Check: 145.11 Septic:
·--"-~-· .. ·-·---·-·-
Bldg Permit: 223.25 Other Fees:
···~--
Total Fees: $ 368.36
Clerk: L~~ .......::::::_. .;!. ,, ·---"'"
Date: t 1 Lu~.~ _ .. _ .. I
.
2
GARFIELD COUNTY BUILDING PERMIT APPLICATION
108 8111 Street. Suite 401, Glenwood Springs. Co 81601
Phone: 970-945-82 I 2/ Fax: 970-384-3470 /Inspection Line: 970-384-5003
\~.l~-.g.\!ID.:;l~b:..l.!W.!b~&!:.lJ.!!
Parcel No: (this infCirmalion is available at the assessors office 970-945-9134)
2139-163-00-014
Job Address: (if an llddrcss has not been assigned. please provide Cr. Hwy or Slrect Name & City) or and legal description 2700 Clear Creek Road, p .0.
De Beque. CO 81630 • CPF located 2.5 miles north-northeast of end of CR 211 -about 19.5 north-northeast of De Beque
Box 296,
3 Lot No: Block No: Subd./ Exemption: __b\) \e \~~ NA
4 Owner; (property owucr} Mailing Address: 11111 S. Wilcresl Drive Ph: AltPh:
Chevron U.S.A. Inc. Houston. TX 77099 (281) 561-4991 (970) 257-6042
5 Contrach>r: I Mailing Address:2181 45 112 Road Ph: A It Ph:
Elkhorn Construction, Inc.~ De Beque. CO 81630 (970) 283-1009 (970) 625-4180
6 Architect I Engineer: Rodney Burrows Mailing Address: 1256'1 VV. C(:Jar Drive, Ph: AltPh:
ZAP EI}Qf & Const Services. Inc. Suitro• 210, Lakewood. CO 80228 (720) 529-4430 (971) 53a-6665
7 Sq, Ft. ofBuilding: Sq. Ft. or Acres of Lot: Height: No. of Floors:
320 ff' (8 f1 X 40ft) 140,600 sq ft. (CPF primary pact) 9.5 ft Single story
8 Use of Building:
Electrical building !o support Central Production Facility power distribution and controls.
9 Describe Work:
Foundation instaHation. placement ol modular unit. and utilily hookups
10 Class of Work:
roNew c Alteration c Addition
II Garage: Septic: To be pcr!l1itt<d with CPF
NA o Attached 0 Detached IX ISDS rBs:mom bldg oCommunity
12 Driveway Pennit: NA Owners valuation of Work: $ 408.500
~OTlCE
Authorih', This application for a Building Permit must be signed by the Owner of the property. de&eribl.'tl al1ovc. or an amborizcd agent If the signature below is not that of the Owner. a separate
letter of authority, signed by the Owner, must be provided with this Application.
Legal Access. A Building Pcm1it cannot be issued without proof of legal and adequate access to the property for purpose~ of inspcctions by thc Building Dcpanmcnt.
Other Permits. Multiple separate pennits may be required: (I) State Electrical Permit, (2) County IS OS l1ennit, (3} another permit required for usc on the property identified above, e.g. State or
County High\\<lyi Road Ac~:css or a State Wastewater Discharge Permit
Yoid Permit. A Building Pennit bc,;omcs null and void if the work authorized is notcommcnced within I 80 days oflhc date of issu~ncc and if work is suspcndl•d or abandoned for a period of 180
days afler commencem~nt.
CERTIFICATION
l bcrtby ccrtify that! ha~·c rcad this i:O.pp\icntion and that the information contained ~bovc is true and correct. I understand :hat thc Building De11artment acceptS the Application. along witl1 the plans
and .~pccific,ations and other data ~ubmined by me or on my behalf (submittals), based upon my certification as to accoraey. ·
Assumin,g completeness <lfthc submi:lals nnd approval of this Application, a Building Permit wilt be issued granting pc1mission to lllC", as Owner, to construct the suucturc(s) and facilities tlctaikd on
the submittals rc\·icwed by the Building Department.
In considerution oft he issuance of the Bui!ding Penn it. I agree that I and my agents wiU <:ompl>' with pro\'isions of any federaL st.'tte or local law regulating the wmk and tltc Garlkld County Building
Codc."lSDS regulations and applicable land usc regulations (County Ro:g\llation(s)). I acknow!cdg(' th~t thc Building Permit may bo: suspcndOO or re11okcd. upon notice from the County. if the toci'ltion.
construction or usc of the struct\1rc(s) ;md facility(ies). dc~cribed abo,·c, ar.: not in compliance with County Rcgulation(s) o~ any other applicable law.
I hereby grant p~rmission to the Building Department t(l enter the property. described above, to inspect the work. I further acknowledge that tltc hsuance of the Building Penn it docs not prcv.:m the
Building: Offidal from: (l) requiring lhc correction of <:rJors in tl1c subminats. if any. discn\'cred af1cr issuance: or (2) stopping construction or usc oftlle stnlcture(s) or fadlity(ic~) if such is in \·iolation
ofCotmty Rcgu!ation(s) {)t any other npplicablc law.
Rcvi~w of this Application, including subminals. and inspections of the work by the Building Department do !)Ot oonstitutc an ac<:<!ptance of responsibility or liabilily by the County of errors, omissions
or discrepancies. As the Owner, l acknowledge that responsibility for ~ompliancc wit!t f~'dcral. SUite and local laws and County Regulations r.::st with me and my aulhorizcd agents. including without
limitnlion my architect designer. cngin.:::cr andi or builder.
! HEREBY ACKNO'Wl.EOGE THAT !HAVE READ AND t.:~DERSTA>-JD HIE ~OTICE& CERTJFICATIO!Ii ABOVE:
!<> ; . (I k ~ . ; ;! /J.:j:/;Z~.r:::r ~:::.. ~t.L,t::..<.-1...... • _; L-'--...-... /U::·~:zt.·t · -----·---·-------" ...... ......... ,".
OWN . RS SI(JNATURE. DATE
'C ---' -< •• lkh,,rn c,~,lstruC!IOI), In" \Villll.stal! ,ounda!IO!l dnd rlav< lii'H\
URSIJV<:1shintJlon Dkision assemb!o:?ri penr;ll applicatioro (Con1H :t. S~•!Jv Cuffin. URS Washmqton Oiv1sion 71300 E Un10n f,ve Suite 100 Denver, CO 802:11
office 303.6,3-2219 Cell· 303·5?6-6514i .STAFF USE ONLY
Special Conditions: A( ,ij ''?J'l-0 ~ '8'1:. 00
Adjusted Valuation: Phtn Chcdi Fee: Pcl'mit Fcc: Manu home Fee: :\-1isc Fees:
I '2.1{p/,(p() b45. !I 2:25.Q~
ISDS Fee: Total Fets: Fees Paid: ;Blio;;::~y-~ & Issue Date: lSi ~. & Issued Date:
N/A ~~-% lltlO·'iD ~ I 12.tJS I l!Jj tYl
Setbacks: OCC Group: ... Const Type: Zoning:
Bii>EPT: .._
1/~Ql PL~Dii) 1[~/o~ A~~~~~ ~~~\'b~ I> ATE AP AL ' DATE
__p
~
I
~ ~
The following items are required by Garfield County for a final Inspection:
!) A fmal Electrical Inspection from the Colorado State Electrical Inspector.
2) Permanent address assigned by Garfield County Building Department and posted at the
structure and where readily visible from access road.
3) A finished roof; a lockable building; completed exterior siding; exterior doors and windows
installed; a complete kitchen with cabinets, sink with hot & cold running water, non-absorbent
kitchen floor covering, counter tops and finished walls, ready for stove and refrigerator; all
necessary plumbing.
4) All bathrooms must be complete, with washbowl, tub or shower, toilet, hot and cold running
water, non-absorbent floors, walls finished, and privacy door.
5) Steps over three (3) risers, outside or inside must.be must have handrails. Balconies and decks
over 30" high must be constructed to all IBC and IRC requirements including guardrails.
6) Outside grading completed so that water slopes away from the building;
7) Exceptions to the outside steps, decks, grading may be made upon the demonstration of
extenuating circumstances., i.e. weather. Under such circumstances A Certificate of
Occupancy may be issued conditionally.
8) A fmal inspection sign off by the Garfield County Road & Bridge Department for driveway
installation, where applicable; as well as any final sign off by the Fire District, and/or State
Agencies where applicable.
A CERTIFICATE OF OCCUPANCY (C.O.) WILL NOT BE ISSUED UNTIL ALL THE
ABOVE ITEMS HAVE BEEN COMPLETED.
A C.O. MAY TAKE UP TO 5 BUSINESS DAYS TO BE PROCESSED AND ISSUED.
OWNER CANNOT OCCUPY OR USE DWELLING UNTIL A C.O. IS ISSUED.
OCCUPANCY OR USE OF DWELLING WITHOUT A C.O. WILL BE CONSIDERED AN
ILLEGAL OCCUPANCY AND MAY BE GROUNDS FOR VACATING PREMISES
UNTIL ABOVE CONDITIONS ARE MET.
I understand and agree to abide by the above conditions for occupancy, use and the issuance of a
C.O. for the building identified in the Building Permit.
GARFIELD COUNTY BUILDING AND PLANNING
970-945-8212
MINIMUM APPLICATION REQUIREMENTS
FOR
CONSTRUCTION OF
COMMERCIAL OR MULTI-FAMILY RESIDENTIAL BUILDINGS
Including
NEW CONSTRUCTION
ADDITIONS
ALTERATIONS
And
MOVED BUILDINGS
In order to understand the scope of the work intended under a permit application and expedite
the issuance of a permit it is important that complete information be provided. When reviewing
a plan and it's discovered that required information has not been provided by the applicant, this
will result in the delay of the permit issuance and in proceeding with building construction. The
owner or contractor shall be required to provide this information before the plan review can
proceed. Other plans that are in line for review may be given attention before the new
information may be reviewed after it has been provided to the Building Department.
Please review this document to determine if you have enough information to design your
project and provide adequate information to facilitate a plan review. Also, please consider
using a design professional for assistance in your design and a construction professional for
construction of your project. Any project with more than ten (10) occupants requires the
plans to be sealed by a Colorado Registered Design Professional.
To provide for a more understandable plan and in order to determine compliance with the
building, plumbing and mechanical codes, applicants are requested to review the following
checklist prior to and during design.
Plans to be included for a Building Permit must be on draft paper at least 18"x 24"" aud
drawn to scale.
1
Plans must include a floor plan, a concrete footing and foundation plan, elevations all sides with
decks, balcony steps, hand rails and guard rails, windows and doors, including the finish grade
and original grade line. A section showing in detail, from the bottom of the footing to the top of
the roof, including re-bar, anchor bolts, pressure treated plates, floor joists, wall studs and
spacing, insulation, sheeting, house-rap, (which is required), siding or any approved building
material. Engineered foundations may be required. Check with the Building Department.
A window schedule. A door schedule. A floor framing plan, a roofing framing plan, roof must
be designed to withstand a 40 pound per square foot up to 7,000 feet in elevation, a 90 M.P.H.
windspeed, wind exposure B or C, and a 36 inch frost depth.
All sheets need to be identified by number and indexed. All of the above requirements must be
met or your plans will be returned.
All plans submitted must be incompliance with the 2003 IBC, IPC, IMC and IFGC.
Applicants are required to indicate appropriately and to submit completed checklist at
time of application for a permit:
I. Is a site plan included that identifies the location of the proposed structure, additions or
other buildings, setback easements, and utility easements showing distances to the
property lines from each corner of the proposed structure prepared by a licensed surveyor
and has the surveyors signature and professional stamp on the drawing? Slopes of 30%
or more on properties must be show on site plan. (NOTE: Section 106.2) Any site plan
for the placement of any portion of a structure within 50 ft. of a property line and not
within a previously surveyed building envelope on a subdivision final plat shall be
prepared by a licensed surveyor and have the surveyors signature and professional stamp
on the drawing. Any structure to be built within a building envelope of a lot shown on a
recorded subdivision plat, shall include a copy of the building envelope as it is shown on
the final plat with the proposed structure located within the envelope.
Yes x
2. Does the site plan when applicable include the location of the I.S.D.S. (Individual
Sewage Disposal System) and distances to the property lines, wells (on subject property
and adjacent properties), streams or water courses? This information must be certified by
a licensed surveyor with their signature and professional stamp on the design.
Yes No x Not necessary for this project ___ ISDS will be permitted ~ith
permanent restroom butld~ng
3. Does the site plan indicate the location and direction of the State, County or private road
accessing the property?
Yes x
4. Is the I.S.D.S. (Individual Sewage Disposal System) designed, stamped and signed by a
Colorado Registered Engineer?
2
Yes __ _ No Not necessmy for this project x IS OS wfl! be permitted with
permanent restroom building
5. Are the plans submitted for application review construction drawings and not drawings
that are stamped or marked identifYing them as "Not for construction, for permit issuance
only", "Approval drawings only", "For permit issuance only" or similar language?
Yes x No__ Not necessary for this project __ _
6. Do the plans include a foundation plan indicating the size, location and spacing of all
reinforcing steel in accordance with the uniform building code or per stamped engineered
design?
Yes x No Not necessary for this project __
7. If the building is a pre-engineered structure, is there a stamped, signed engineered
foundation plan for this building?
Yes_x_ No__ Not necessary for this project __
8. Do the plans indicate the location and size of ventilation openings for under floor crawl
spaces and the clearances required between wood and earth?
Yes__ No__ Not necessmy for project_x_
9. Do the plans indicate the size and location of the ventilation openings for the attic, roof
joist spaces and soffits?
Yes__ No__ Not necessmy for this project_x_
10. Do the plans include design loads as required under the IBC or IRC for roof
snow loads, (a minimum of 40 pounds per square foot in Garfield County)?
Yes_x_ No__ Not necessary for this project __
11. Do the plans include design loads as required for floor loads under the IBC or IRC?
Yes_x_ No__ Not necessary for this project __
12. Does the plan include a building section drawing indicating foundation, wall, floor, and
roof construction?
Yes_x_ No__ Not necessary for this project __
13. Is the wind speed and exposure design included in the plan?
Yes_x_ No__ Not necessary for this project __
14. Does the building section drawing include size and spacing of floor joists, wall studs,
ceiling joists, roof rafters or joists or trusses?
Yes_x_ No__ Not necessary for this project __
15. Does the building section drawing or other detail include the method of positive
connection of all columns and beams?
Yes x No Not necessary for this project __
3
16. Does the elevation plan indicate the height of the building or proposed addition from the
undisturbed grade to the midpoint between the ridge and eave of a gable or shed roof or
the top of a flat roof? (Check applicable zone district for building height maximum)
Yes_x_ No__ Not necessary for this project __
17. Does the plan include any stove or zero clearance fireplace planned for installation
including make and model and Colorado Phase II certifications or Phase II EPA
certification?
Yes__ No__ Not necessary for this project_X_
18. Does the plan include a masonry fireplace including a fireplace section indicating design
to comply with the IBC or IRC?
Yes__ No__ Not necessary for this project_x_
19. Does the plan include a window schedule or other verification that egress/rescue
windows from sleeping rooms and/or basements comply with the requirements of the
IBCoriRC?
20.
21.
22.
23.
24.
25.
Yes No Not necessary for this project_x_
Does the plan include a window schedule or other verification that windows provide
natural light and ventilation for all habitable rooms?
Yes__ No__ Not necessary for this project_x_
Do the plans indicate the location of glazing subject to human impact such as glass doors,
glazing immediately adjacent to such doors; glazing adjacent to any surface normally
used as a walking surface; sliding glass doors; fixed glass panels; shower doors and tub
enclosures and specify safety glazing for these areas?
Yes__ No__ Not necessary for this project_x_
Do the plans include a complete design for all mechanical systems planned for
installation in this building?
Yes x No Not necessary for this project __ _
Have all areas in the building been accurately identified for the intended use?
(Occupancy as identified in the IBC Chapter 3)
Yes_x_ No__ Not necessary for this project __ _
Does the plan indicate the quantity, form, use and storage of any hazardous materials that
may be in use in this building?
Yes_x_ No__ Not necessary for this project __
Is the location of all natural and liquid petroleum gas furnaces, boilers and water heaters
indicated on the plan?
Yes No -- --Not necessary for this project_x_
4
This project will utilize
electric resistive heaters.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
Do the plans indicate the location and dimension of restroom facilities and if more than
four employees and both sexes are employed, facilities for both sexes?
Yes__ No__ Not necessary for this ~F~jilet X Restrooms located at separate facility
Ull tng
Do the plans indicate that restrooms and access to the building are handicapped
accessible?
Yes No Not necessary for this ~r'\j~Gt x
Ull 1ng
Restrooms located at separate facility
Have two (2) complete sets of construction drawings been submitted with the
application?
Yes x No
Have you designed or had this plan designed while considering building and other
construction code requirements?
Yes_x_ No__ Not necessary for this project __
Does the plan accurately indicate what you intend to construct and what will receive a
final inspection by the Garfield County Building Department?
Yes_x_ No __
Do your plans comply with all zoning rules and regulations in the County related to your
zone district? For comer lots see supplemental section 5.05.03 in the Garfield County
Zoning Resolution for setbacks.
Yes X No __ _
Do you understand that approval for design and/or construction changes are required
prior to the implementation of these changes?
Yes x No ----
Do you understand that the Building Department will collect a "Plan Review" fee from
you at the time of application and that you will be required to pay the "Permit" fee as
well as any "Septic System" or "Road Impact" fees required, at the time you pick up your
building permit?
Yes_x_ No __
Are you aware that you are required to call for all inspections required under the IBC
including approval on a final inspection prior to receiving a Certificate of Occupancy
and occupancy of the building?
Yes x No ----
Are you aware that the Permit Application must be signed by the Owner or a written
authority be given for an Agent and that the party responsible for the project must
comply with the Uniform Codes?
Yes_x_ No __
5
36. Are you aware that you must call in for an inspection by 3:30 the business day
before the requested inspection in order to receive it the following business day?
Inspections will be made between 7:30a.m. and 3:30p.m. Monday through Friday.
Inspections are to be called in to 384-5003.
3 7. Are you aware that requesting inspections on work that is not ready or not accessible
will result in a $50.00 re-inspection fee?
Yes_x_ No ___ _
38. Are you aware that prior to issuance of a building permit you are required to show proof
of a driveway access permit or obtain a statement from the Garfield County Road &
Bridge Department stating one is not necessary? You can contact the Road & Bridge
Department at 625-860!.
Yes x No ___ _
39. Do you understand that you will be required to hire a State of Colorado Licensed
Electrician and Plumber to perform installations and hookups? The license number will
be required at time of inspection.
Yes x No ____ _
40. Are you aware, that on the front of the building permit application you will need to fill in
the Parcel/ Schedule Number for the lot you are applying for this permit on prior to
submittal of the building permit application? Your attention in this is appreciated.
Yes x No ___ _
41. Do you know that the local fire district may require you to submit plans for their review
of fire safety issues? Yes x No (Please check with the
building department about this requirement)
42. Do you understand that if you are planning on doing any excavating or grading to the
property prior to issuance of a building permit that you will be required to obtain a
grading pennit?
Yes x
43. Did an Architect seal the plans for your commercial project? State Law requires any
commercial project with occupancy of more than 10 persons as per Section I 004 of the
IBC to prepare the plans and specifications for the project.
Yes No Not Necessary for this project _-'.x __ _
I hereby acknowledge that I have read, understand, and answered these questions to
the best of my ability.
6
36. Are you aware that you must call in for an inspection by 3:30 the business day
before the requested inspection in order to receive it the following business day?
Inspections will be made between 7:30 a.m. and 3:30 p.m. Monday through Friday.
Inspections are to be called in to 384-5003.
37. Are you aware that requesting inspections on work that is not ready or not accessible
will result in a $50.00 re-inspection fee?
Yes_x_ No. ___ _
38. Are you aware that prior to issuance of a building permit you are required to show proof
of a driveway access permit or obtain a statement from the Garfield County Road &
Bridge Department stating one is not necessary? You can contact the Road & Bridge
Department at 625-860 l.
Yes x No. ___ _
39. Do you understand that you will be required to hire a State of Colorado Licensed
Electrician and Plumber to perform installations and hookups? The license number will
be required at time of inspection.
Yes x No. ___ _
40. Are you aware, that on the front of the building permit application you will need to fill in
the Parcel/ Schedule Number for the lot you are applying for this permit on prior to
submittal of the building permit application? Your attention in this is appreciated.
Yes x No. ___ _
41. Do you know that the local fire district may require you to submit plans for their review
of fire safety issues? Yes x No (Please check with the
building department about this requirement)
42. Do you understand that if you are planning on doing any excavating or grading to the
prope11y prior to issuance of a building permit that you will be required to obtain a
grading permit?
Yes x
43. Did an Architect seal the plans for your commercial project? State Law requires any
commercial project with occupancy of more than 1 0 persons as per Section I 004 of the
IBC to prepare the plans and specifications for the project.
Yes No Not Necessary for this project __ x __ _
I hereby acknowledge that I have read, understand, and answered these questions to
the best of my ability.
6
From:
To:
CC:
Subject:
Date:
Attachments:
Jake Mall
Cuffin, Sally;
RE: Driveway permit exemption
Thursday, November 06,2008 1:25:38 PM
Sally: you are exempt from the driveway access permit requirement for this project. Jake
-----Original Message-----
From: Cuffin, Sally <Sally.Cuffin@wgint.com>
Sent: Thursday, November 06, 2008 12:48 PM
To: jmall@garfield-county.com <jmall@garfield-county.com>
Subject: Driveway permit exemption
Jake,
I just realized that I never got an official driveway exemption email
from you for buildings at Chevron's Central Production Facility. The
facility is located about 2.5 miles north of the end of CR 211 (near the
confluence of Tom Creek and Clear Creek).
Let me know if you have questions.
Thanks!
Sally Cuffin
(303) 843-2219
(303) 526-6514 (cell)
August 29, 2007
Mr. Fred Jarman, Director
Garfield County Building & Plamung Department
108 81h Street, Suite 401
Glenwood Springs, CO 81601
Re: Authorization to. Represent Chevron -
James s~ Talbot
Sen lor Counsel
Sally Cuffin, Washington Group International Inc.
Deat Mr. Bean:
Law Department
North Arilerica Exploration
and Pro'C~l,lction Company
lllll S. Wilcrest #N2006
Houston, Texas 77099-4397
Tel 281·561·3536
Fax 281·561·3515
jtalbot@ichevroO.com
Chevron U.S.A. Incc (Chevron) has retained the services of Sally Cuffi11 of the Washington
Group International Inc .. Ms. Cuffin will represent Chevron in facility permitting for our
Piceance Project in Garfield County, a role in which she will prepare and submit Special Use
Pem}it Applications, ISDS, building, grading, pipeline, road crossing and other routine
construction related applications and infom•ation on behalf of Chevron. Ms. Cuffin is also
authorized to particip;~te in discussions before ;~ppointed and elected boards regarding the various
applications, however at such meetings, her authority to legally bind Chevron is limited to the
terms set fcnth in the Permit Applications or other written documents filed on our behalf.
Sincerely,
cc: Nicole Johnson
TillJothy Barrett
Sally Cuffin
N 11205 o. -------------------Assessor's Parcel No. 2139-163-00-014
Date ___ 1_1_61_2_0_09 __
ISUULitnNG PERMIT CARD
Job Address ---~2~7~00~C~Ie~a~r~C~re~e~k~R~d=·~D~e=B=eq~u~e~-----------------------------
Owner ______ C_h:..:.e:..:.vr....:o:..:.n....:U....:S_A _______ Address ___ 1_11_1_1_S._W_i_lc_re_st_D_r_. H_O_U_ Phone# 281-561-4991
Contractor Elkhoni Const. Address ___ 2_18_1 __ 45 __ 11_2_R_d_._D_'_b_e...:.qu_e Phone # 970-283-1009
Setbacks: Front _____ Rear ______ RH, _____ LH _____ Zoning 970 -625-4180
electrical building
Soi Is Test ---:?¥--:::----=-.,...,-----
Footing ::Z-U-01 IGYVt
Foundation ___ '----------
Grout __________________ _
Underground Plumbing __________ _
Rough Plumbing -----------
Framing, _______________ _
Insulation ___________ _
Roofing _____________ _
Drywall --------------
Gas Piping ____________ _
INSPECTIONS 683-~trz_
NOTES
Weatherproofing ____________ _
Mechanical .
Electrical Rough (State) 1> 8'-!0
Electrical Final (State) ~
Final ,t.,.f1·f0 /Checklist C~ d? khf/(
Certificate Occupancy # _U=-~,f,--1-f.._;------
Date 2. ./ Cf. to
Septic System # __________________ _
Date ________________ _
Final _____________ _
Other _________ _:..:. ______ _
(continue on back)
UILDI GP
GARFIELD COUNTY, COLORADO
iNSPECTION WUU .. NOT BE MADE UNlESS
THIS CARD IS POSTED ON TNE JOB
Datelssued_j' w·o'-'1-"-------Permit No. ll2c6
AGREEMENT
In consideration of the issuance of the permit, the applicant hereby agrees to comply with all laws and regulations
related to the zoning, location; construction and erection of the proposed structured for which this permit is
granted, and further agrees that if the above said regulations are not fully complied with in the zoning, location,
erection and construction of the above described structure, the permit may then be revoked by notice from the
County Building department and IMMEDIATELY BECOME NUll AND VOID.
Address or legal Description JjiD'---",.,_.,"""'..__,.,.,._,..tjl_Rd. ~..,.!..,lf."-"'"----
Owner _CJt\NDC'-----------Contractor ~"'Dn"'-'n'-'----------
Building Permit Type -Cbu~.al,---------------------------
This Card Must Be Posted So It Is Plainly Visible From The Street Until Final Inspection
INSPECTION RECORD
Footing Driveway
;;l-;;kh?Yf Mv1._
Foundation I Grouting Insulation
Underground Plumbing Drywall
Rough Plumbing Electric final {by State Inspector)
(Prior to Final) 1--8-/0 0
Rough Mechanical Septic Final
Gas Piping FINAL
'J-.-/1-/o ·Mn{
Electric Rough {by State Inspector)
(You Must Call For Final Inspection)
(Prior to Framing) Notes
Framing
(to include Roof in place & Windows & Doors installed & Firestopping in place)
THIS PERMIT IS NOT TRANSFERABLE
For Inspection Call970-384-5003 Office 970-945-8212
108 8th Street, Suite 401 Glenwood Springs, Colorado 81601
DO NOT DESTROY THIS CARD
~:::_ov_e_D __ L\ •_,\u,_,·O"--')_.____ ~ ~{~ PROTECTP:~MlT~~~
(DO NOT LAMINATE)
CHEVRON PRODUCTION FACILITY
I JCEANCE BASIN DEVELOPMENT
GARFIELD COUNTY, COLORADO
ELEC. BUILDING AT EAST COMPRESSION STATION-BLDG. ZZZ-4000
(PRE-FABRICATED BUILDING CONSTRUCTED BY POINTBPOWER)
GARFIELD COUNTY
9'-7 1/2"
~FOR PRE-F/<B BUILO!NG, SEE VENDOR DWG.'S~
SEE DWG. FOR STAIRS AND HANDRAJ~y~ 2033-201-30-SS-1215-01 ~
-' c ~r .
•· . ' . .. FlN. GRADE . ' .. ' 1;·.1 1.1 1.,:1 1,~ r·1 r-:·1
c:~::::E:;::::::-:::@tec:®rro~~"@[)Jir~~[EE:P]i!.&::::::·:::::::!::~'::;z~-~~
2 BUILDING ELEVATIONS
NTS
'------1
.r
~
I
h
-
' " ..
,!, I < 1· 'I Lb::-J ~~~
0\IPROJECT
11"1ASSOCIATE
Mr. Todd Anderson
Engineer
Colorado Division of Housing
1313 Sherman Street
Denver, CO
Re: Chevron Piceance Basin Project, Point Eight Power
Building review for pre-manufactured non-residential buildings
Mr. Anderson"
At the request of Chevron and Project Associates, Inc., ZAP Engineering and Construction Services, Inc.,
has supervised and reviewed the engineering drawings and calculations for the Electrical Building listed
above.
The building was constructed from an ocean-going shipping container designed and rated according to ISO
specifications. These specifications require the structure to withstand stresses from 5-7 fully loaded
containers high without failure or significant deformation. Attached in the calculations are computer
analyses that verify that the building can withstand IBC-mandated loading with large factors of safety. The
building will be installed in Garfield County in a 40 psf snow load area, and the calculations were based on
40 psf snow load concurrent with 90 mph wind loads (far exceeding IBC load cases.) We also attached
seismic calculations that show loading from snow and wind far exceeds seismic requirements in this area.
Please do not hesitate to contact us or the building manufacturer if you need any additional information for
your review.
Sincerely,
Rodney D. Burrows, PE
ZAP Engineering & Construction Service, Inc
12567 W Cedar Drive, Suite 210
Lakewood, CO 80228
720-529-4430
r''"'. [)/I.TE 07-31-10
12567 W. CEDAR DRIVE SUITE 210 LAKEWOOD, CO 80228
OFFICE (720) 529-4430
Inspection Report
COLORADO STATE ELECTRICAL BOARD
INSPECTION REPORT I CORRECTION NOTICE
Date Received: 08-FEB-10 Permit Number: 671618
Contractor/HomeOwner: SPECIALIZED AUTOMATION SERVICES
LLC
Address:
Type of Inspection:
Action:
2700 CLEAR CREEK RD
Complete Final
Accepted
Comments or Corrections:
1) 314.25 Cover, faceplate, luminaires or canopy required for boxes (gutter cover in control
room) 2) 35 kv switchgear clerances must be maintained 3) 110.3(B) Listed and labeled
equipment shall be installed and used per listing and labeling (em light not worl<ing) 4) 210.8
(B)(5) GFI required (Non residential) Sinks ~ where receptacles are installed within 1.8 m (6
It) of the outside edge of the sink. 5) battery cover required 480.9(8) Batteries, Live Parts.
Guarding of live parts shall comply with 110.27 6) Installer on site making corrections
Inspectors Name: Cyrus Tuchscher
Phone Number: 970-625-5085 Date: 08-FEB-1 0
COLORADO STATE ELECTRICAL BOARD
DEPARTMENT OF REGULATORY AGENCIES
1580 Logan St. Suite 550
Denver, Colorado 80203-1941
Phone: (303) 894-2985
https:f/www.dora.state.co.us/pls/rea!IEp_ Web_Inspection_GUI.Process_Page
Page 1 of 1
2/9/2010
CHEVRON, U.S.A.
PICEANCE FACILITY
STRUCTURAL REPORT
FOR A MCC BUILDING CONSTRUCTED FROM A MODIFIED
40' STEEL DRY FREIGHT HIGH CUBE ISO CONTAINER
Prepared by:
PAl Engineers and Consultants
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
CHEVRON U.S.A.-PICEANCE FACILITY
Title
STRUCTURAL REPORT
FOR
A MCC BUILDING CONSTRUCTED FROM A MODIFIED
40' STEEL DRY FREIGHT HIGH CUBE ISO CONTAINER
TABLE OF CONTENTS
June2008
Rev: 1
Pa e
EXECUTIVE SUMMARY ................................................................................................................................ 3
ANALYSIS DATA AND ASSUMPTIONS .......................................................................................................... 4
CONTAINER DEAD AND LIVE LOADING ..................................................................................................... 4
LOAD DIAGRAMS: ....................................................................................................................................... 5
LOAD SUMMARY .......................................................................................................................................... 6
SACS BASIC LOAD CASES .......................................................................................................................... 7
LOAD COMBINATIONS ................................................................................................................................. 7
COMPUTER MODEL AND ANALYSIS RESULTS ........................................................................................... 8
CONCLUSION ................................................................................................................................................ 8
ILLUSTRATIONS ................................................................................................................................. 9-17
DRAWING LIST PROVIDED BY CHEVRON ................................................................................................. 18
SACS FILE LiST ...................................................................................................................................... 18
2
Chevron U.S.A.
Piceance Facility
P AI Job Number: 2033.201
Executive Summary
STRUCTURAL REPORT FOR A 40' MCC BUILDING
June2008
Rev: 1
Chevron U.S.A. commissioned Project Associates, Inc. (PAl) to structurally analyze a steel
container originally used as a Dry Freight ISO Cargo Container. The container will be modified
to serve as a MCC building in the State of Colorado at the Piceance Facility.
The steel frame is made of un-conventional sections, primarily formed from steel plate. The
container is framed with four steel comer posts formed from steel plate. The roof and walls are
made of corrugated steel plate. The floor is framed with a channel type cross section formed
from steel plate. It is covered with 1 118" thick marine plywood.
The planned modification consists of reframing the ends of the container for two doors (one at
each end) and a window Air Conditioning unit.
The container with the planned modifications was analyzed in accordance with the International
Building Code (IBC), the Chevron Midcontinent SBU design criteria, the American Institute of
Steel Construction (AISC) 9th Edition and the American Welding Society (A WS D 1.1) Structural
Welding Code, latest edition.
The design requirements of the ISO Cargo Containers are quite rigorous. The containers are
designed to withstand the extreme roll, pitch and heave forces that occur on cargo ships while
being stacked on deck. In addition, they are designed to transport cargo by truck and rail. They
must be capable of being lifted by the corners while fully loaded. Our vertical load for the MCC
building is approximately one half of the design load of the ISO Cargo Container. As a result of
our structural analysis, we conclude that the modified Cargo Container to be located at the
Piceance facility with the proposed modifications can withstand the operational loading with no
additional reinforcements to the structure.
Stmctimt1"'1(j}aly:sis by:
Luis E. Sevilla
Civil Structural
Engineer
Date
3
Checked by:
Edward C. Moore, Jr.
Senior Staff Structural
Engineer
Date
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Analysis Data and Assumptions
Dry Freight ISO Cargo Container Configuration
June2008
Rev: 1
The container structure has 4 vertical posts (one at each corner). These posts or columns are
built-up sections from steel plate (see illustrations section). The steel framing is covered by
corrugated steel on the walls and roof. The floor framing consists of steel channel formed
from steel plate. The channels are spaced approximately 12 inches apart. The floor decking
consists of I 1/8" marine grade plywood fastened to the channel with steel screws. The
primary dimensions of the building are listed below.
Length
Height
Width
40' -0"
9'-6"
8'-0"
Container Dead and Live Loading
The container dead loads were estimated by including the weight of structural frame in air
and the weight of wood deck on the floor. All dead loads were generated from the structural
drawings and used in the container in-place analysis.
A live load of 20,000 lbs was evenly distributed on the existing floor to account for
equipment. A load of 40 PSF was applied to the roof to account for snow for a total of 12,600
lbs. In addition, a load of 1,415 lbs. was added for loads not included in the model. The area
load diagrams reflect the applied loads. The empty weight of the container is 8,305 lbs. The
grand total of all vertical loads is 42,320 lbs.
The unmodified building was originally designed to withstand an interior load of 58,730 lbs.
This is greater than the actual load on the interior of the modified building of21,410 lbs.
The unmodified building can withstand 183.53 PSF versus 102.5 PSF actually load on the
modified building ( 62.5 PSF on the interior and 40 PSF snow load on the roo!).
4
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
Load diagrams:
SNOW
EQUIPMENT
AND LIVE LOAD
DEAD LOAD
(NON CODED)
STRUCTURAL REPORT FOR A 40' MCC BUILDING
FLOOR
FLOOR
5
June2008
Rev: 1
Chevron U.S.A.
Piceance Facility
PAl Job Number: ·2033.201
Load Summary
STRUCTURAL REPORT FOR A 40' MCC BUILDING
ESTIMATED WEIGHT ON ROOF
SNOW LOAD ( 40.0 PSF)
TOTAL WEIGHT ON ROOF DECK
KIPS
12.6
12.6
ESTIMATED WEIGHT ON FLOOR DECK & ASSUMED LIVE LOAD
KIPS
LIVE LOAD (62.5 PSF ) 20.0
DEAD LOAD (5 PSF) 1.415
TOTAL WEIGHT ON FLOOR DECK 21.41 K
CONTAINER ESTIMATED WEIGHT OF STEEL
TOTAL STEEL
I KIPS
GRAND TOTAL ALL ITEMS-42,320 1bs (APPROX.) 42.32
6
June2008
Rev: 1
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
SACS Basic Load Cases
LOAD DESCRIPTION
CASE
I Dead Loads{ coded stee ll
2 Floor Dead Load (1 l/8" marine Plywood)
3 Equipment on Floor ( 62.5 PSF)
4 Snow on Roof
5 Wind @ 0 Degree (90 MPH) Sacs Model Global Coordinates "X"
Horizontal Direction
6 Wind @ 90 Degree (90 MPH) Sacs Model Global Coordinates "Y"
Horizontal Direction
Load Combinations
LOAD DESCRIPTION Stress Modifier
CASE
7 110%(1) NIA
8 1 00%(7)+ 1 00%(2)+ 1 00%(3) N/A
9 1 00%(8)+ l 00%( 4) ---------ORA VITY LOAD +SNOW N/A
10 l 00%(8)+ 1 00%(5)----------GRA VITY LOAD+ WIND 1.333
II 1 00%(8)+ 1 00%( 6)----------GRA VITY LOAD + WIND 1.333
12 100%(8)+100%(4)+100%(5)---GRA VITY LD +SNOW+ WIND 1.333
13 100%(8)+100%(4)+100%(6)---GRA VITY LD +SNOW+ WIND 1.333
June 2008
Rev: 1
LOAD
7.55 Kips
1.41 Kips
20 Kips
12.6 Kips
1.97 Kips
10.10 Kips
LOAD
8.305 Kips
29.403 Kips
42.000 Kips
29.400 Kips
29.400 Kips
42.000 Kips
42.000 Kips
Note: The member detail report of the computer output is self explanatory. The maximum "unity
check is the final result for that particular load case. We have conservatively assumed that
gravity, snow and wind act at the same time. This assumption exceeds the IBC criteria.
7
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Computer Model and Analysis Results
June2008
Rev: 1
The computer structural model was generated with the "Structure Analysis Computer
System" (SACS) program. It incorporates the member sizes and properties of the container.
The SACS model was developed from the drawings and specs of the CIMC container and the
Point 8 Power modification drawings. The model reflects the steel and the loads shown on
the drawings and in this report.
Most of the members in the building showed stresses well below the allowable values. A
few members showed high stresses. The computer analysis was based on Allowable Stress
Design (ASD). The results of the analysis showed high stresses on the floor members. These
stresses do not occur due to the way the floor members are framed to the corrugated steel or
flooring material. This is a matter of modeling rather than the actual loading of the members.
Our computer model conservatively neglects the strength added by the I I /8" marine
plywood floor. This is common practice in order to reduce modeling and computing time.
However, we know from experience that the floor decking adds considerable strength.
For example, the longitudinal bottom side member "12 -IT" with group label CHB is
typical of the members that show up as overstressed in the analysis results. (see the
illustration section and the member detail report). The unity check of this member is shown
as "2.43", mainly over stressed in bending in both axes. The floor deck is made of I 1/8"
thick plywood. This deck is stiff enough to provide continuous support for the small forces in
the weak axes of the member, preventing "Mz" (moment on the weak axes) from actually
happening.
In addition, the corrugated wall plate has significant out-of-plane stiffness to share the load
with the members that frame into it. The moment "My" in the member is greatly reduced
because the corrugated plate is continually welded to the member. In order to achieve this
effect in the model, we would have to describe the plate in many little pieces. This is a
laborious and unnecessary modeling method. Just as with hand calculations, we must still use
engineering judgment when performing computer structural calculations.
Conclusion
The design requirements of the ISO Cargo Containers are quite rigorous. The containers are
designed to withstand the extreme roll, pitch and heave forces that occur on cargo ships
while being stacked on deck. In addition, they are designed to transport cargo by truck and
rail. They must be capable of being lifted by the corners while fully loaded. Our vertical
load for the MCC building is approximately one half of the design load of the ISO Cargo
Container. As a result of our structural analysis, we conclude that the Cargo Container to be
located at the Piceance facility with the proposed modifications can withstand the operational
loading with no additional reinforcements to the existing structure.
8
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
ILLUSTRATIONS
9
June 2008
Rev: 1
Chevron U.S.A.
Piceance Facility
STRUCTURAL REPORT FOR A 40' MCC BUILDING
PAl Job Number: 2033.201
REAR END
MEMBER
LABEL
"CHB" (TYP)
@BOTTOM
ROOF PLATE "PLD"
FRONT END
RIGHT
ELEVATION
PLATE "PLE"
MCC BUILDING ISOMETRIC
FLOOR FRAME
TUNNEL PLATE "PLT"
MCC BUILDING ISOMETRIC (RIGHT ELEVATION
PLATE NOT SHOWN FOR CLARITY)
10
June2008
Rev: 1
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
ROOF PLATE
LEFT SIDE
RIGHT SIDE
MCC BUILDING PLAN VIEW
(LOOKING DOWN-BOTTOM FRAME IS SEEING THRU THE
ROOF PLATE)
II
June2008
Rev: 1
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
FRONT
DOOR
OPENING
STRUCTURAL REPORT FOR A 40' MCC BUILDING
ROOF PLATE "PLD"
FLOOR FRAMING
TUNNEL
PLATE "PLT"
FRONT END VIEW LOOKING
TOWARDS THE REAR END
12
FRONT
PLATE
"PLG"
June2008
Rev: 1
FRONT END
COLUMN "CL2"
(TYP)OFTWO
Chevron U.S.A,
Piceance Facility
STRUCTURAL REPORT FOR A 40' MCC BUILDING
PAl Job Number: 2033.201
REAR HEADER
LABEL "TSR"
REAR PLATE
"PLH" (TYP)
\_
REAR DOOR
SILL LABEL
"CSR"
REAR END VIEW LOOKING
TOWARDSTHEFRONTEND
13
FRONT PLATE
"PLG"
(BEYOND)
DOOR
OPENING
June2008
Rev: 1
COLUMN@ REAR
END LABEL "CLl"
TYP.OFTWO
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
ROOF PLATE
"PLD" BEETWEN
ENDS
PARTIAL ISOMETRIC AT TOP
FRONT END OF MCC BUILDING
14
June2008
Rev: 1
@TOP FRONT END
ROOF PLATE
"PLA"
TOP MEMBER@
BOTH SIDES,
LABEL "TST"
Chevron U.S.A.
Piceance Facility
STRUCTURAL REPORT FOR A 40' MCC BUILDING
PAl Job Number: 2033.201
ROOF PLATE "PLC"
AT REAR END
ROOF PLATE "PLD"
PARTIAL ISOMETRIC AT REAR
END OF MCC BUILDING
15
June2008
Rev: 1
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
bUTRIGGER (TYP
OF7 AT EACH
SIDE).TOTAL OF 14.
LABEL "C2"
TUNNEL BOW
LABEL "C3"
TYP. OF 12
TUNNEL PLATE
"CHB" TYP.@
BOTH SIDES
PARTIAL ISO LOOKING UP AT FRONT END
16
June2008
Rev: 1
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
"C5"
"CS"
"CHB" (TYP)@ BOTH
SIDES
"C6"
"TSB"
ISOLATED FLOOR PLAN VIEW WITH MEMBER
GROUP LABELS
17
June2008
Rev: 1
TUNNEL
PLATE
"C2" @ E/SIDE;
"C3"@ CENTER
Chevron U.S.A.
Piceance Facility
STRUCTURAL REPORT FOR A 40' MCC BUILDING
PAI.Job Number: 2033.201
. . . . . . . . . . . '. ...........
·.·.·.· ·.·.·.· ..
..... ' . . . . . . . . . . '
. .... ' . . . . . . . . ' . ........ .
.... . . ' . . . . . .
... . . . '
MARINE PLYWOOD 1 1/8" THICK (TYP)
MCC BUILDING FLOOR DECK PLAN VIEW
MEMBER 12-IT GROUP LABEL "CHB"
TYPICAL APPARENT OVERSTRESS WITH
UNITY CHECK OF 2.43
J
MCC BUILDING FLOOR
PLAN VIEW
18
June2008
Rev: l
TUNNEL
PLATE
Chevron U.S.A.
Piceance Facility
PAI Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
DRAWING
AND
SACS FILE LIST
19
June2008
Rev: 1
Chevron U.S.A.
Piceance Facility
PAl Job Number: 2033.201
STRUCTURAL REPORT FOR A 40' MCC BUILDING
Drawing List Provided by Chevron
DRAWING NO. TITLE
June 2008
Rev: 1
SBI 99 -GA GENERAL ARRANGEMENT----------------------------------------------0
084A42G 1B BASE ASSEMBLY-----------------------------------------------------------0
084A45G IE REAR END ASSEMBLY----------------------------------------------------0
084A45G IF FRONT END ASSEMBLY---------------------------------------------------0
084A45GlG 40'X8'X9' 6" GENERAL ARRANGEMENT----------------------------0
084A45G 1M MARKING ARRANGEMENT----------------------------------------------0
084A42G IR ROOF ASSEMBLY-----------------------------------------------------------0
084A45G IS SIDEWALL ASSEMBLY---------------------------------------------------0
Sacs File List
1-Sacinp.container003-----------------------------------------------------------------------Input File
2-Saclst.container003 ----------------------------------------------------------------------Output File
3-PSVDB.container003 ------------------------------------------------------------------Postvue File
20
,) GLOBALCOMPUTER
PLOTS
)
,_'
ISOMETRIC
I4 IS I6 I8 I9 IA IB ED IC ID IE IF IG
H3 H4 H6 H7 H8 EA EC HH HJ HK HL
z
)
X
·-PARTIAL ROOF PLAN/PLATE GROUP
y
t L_x
X
X f*
p c
X
p c
X 1-
X p c
X
p c
X 1-
p c
X
p c
X 1-
X p c
X
p c
X ·-
p c
X
·P C
Xi-
p c
X
p c
x[-
p c
X
p c
X H-
p c
X
p c x;-
p c
~
p c x;-
X
PLC
PLC
PLC
PLC
PLC
PLD
PLC
I
PLC
PLC
PLC
PLC
.
PART':£'A.i::'. ROOF PLAN/PLATE GROUP
PLA
PLA L
PLA L
1<--
PLA j L
1<--
PLA L
1<--
PLA L
1<--
PLA
PLD PLD 1<--
PLA L
PLA L
1<--
PLA
PLA
PLA
PLA
y
'--FLOOR PLAN VIEW
3 A C 13 14 15 16 17 18 19 lA lB lC lD lE lF lG lH li EJI lK lL 1M lN 10 lP lQ lR lS lU lW 21 22 23 24 29 2A 28 2C4
X N3
2U : 92l'< ·~~ X FE
X GE " . Fl FC Fl FC Ff F' F1 Ft . F' Fl Fl Ft Fl G< G: G: G G< Gt Gl G: Gl Gt GJ Gl G< ~k k .. <-
AY
2U
5Q
~~ FI?.ONT
qy
4~
2T
EK
X FH
9 8 D E F G H I J K L M N 0 p Q R s 'E :u v w X y z 11 l 12 11 n 1X 1Y 12 20 25 26 27 82
a
y
ll -
\
'· )
_\ I
\
I J.
.
_j_ . l
'I I
X X X
I
\
\
I
f
X -
·-fARTIAL FLOOR PLAN/PLATE GROUP
;'/s'1 /"fl.,tVNIE 0-fWOO:D ..< G)!1 ~ A.
X -r----------.\_ -------y -----r-"~ k:-.,__-·
-~ ----------~"---· .,__
~ ----·---------~ ~---
PLT I~ T
T PLT 1;1~ PLT PLT 'YeL~ PLT PLT %; T ~LT L'l' 'i: PLT PLT PLT
PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT
PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT
PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT
.
PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT
PLT -~ TPLT 1~% PLT PLT ~~ PLT ~ ~LT WLO ~~ PLT PLT PLT T L1 PLT T
'., ---""----I'------~ -r-----f----"'.. ...._
I~ 1------------r--------------. -f--
L~~ X
(_. ~ I ~R/l.l/>4'£. r:JI..y lrt><:>'t) ...,
.:PETA.lL 1
·~ RIGH'l: .:....LEVATION JOINT No.
5 DQDO H2 H3 H4 HS H6 H7 H8 H9
X
X
X
X
X
X
X
9 B 0 E F G H I J K L M N 0 p Q R s
6
z
EA EC HH HI HJ HK
'EE U v w X y z 10 11 12 lT lV
HL
lX lY
<:59
HM RC HN PN P~SE
lZ 20 25 26 27
F
X
0
XG
X
F
X
,x 0
i282
1
0
T
3
p
RIG~-~LEVATION MEMBER GROUP.
TSli'ST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TS1TSY~
~
H
"' ~
H X " ~
H
"' ~ X
H ~: "' ~
H
" ~
H
" il X
z
LABEL=GROUP
RIGRJ.~,_.;..EVATION PLATE GROUP.
XX
xl I I X :I I I
I '
I I
I IX XI II: xl
PLE PLE PLE PLE PLE
j X lt X
, 7E " H " )fi H lE lE lE
z
X
LEFT~LEVATION MEMBER GROUP
TSJrST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TSTISY&'JW(T
.-<
>-1 X
u x.
X X
.-< X >-1 u X
X X
.-< lx >-1 u ~t X
.-<
>-1 u
,;::
z
LABEL=GROUP
FRONT. EL. WITH PLA.TE GROUP
X X
PLG
I
X
PLG
!
X
X
) PLG
X
PLG
X
PLG
X
XX
PLG
I PLG PLG PLG
J
X X
X
PLG
X
PLG
X
PLG
X
PLG
X
X
PLG
X
PLG
X
!
PLG
X
X
XX
REAR EL. WITH PLATE GROUP
--"----"'
PLH I
PLH PLH
I
PLH
PLH
PLH PLH
PLH
)
PLH
PLH PLH
PLH
PLH I
PLH PLH
I
PLH
X
REAR END
6 QK QD QV N:tlC QJ QB QZFF QA QI Q9 QH Q8 QG Q7 QF Q6 QE QSG QY 5
y
ESJ; liSJ; liSJ; 'BS.t'BSJ. liSJ; liSJ;'!,!' .liS.t 'BSJ. liSJ; liSJ; ESJ; as• liSJ; liSJ; liSJ; liSJ; liSJ>! JiSJ. B"S
"' FI TS3 "' FJ
8 8
.-< ,.,
"' u
"' 8 ox OT
.-< X ,.,
u "' "' 8
"' .-<
"' ,.,
8 u
MY N6 NO GS GR
X X X
"' .-<
"' ,.,
8 u
ow OS
" "' .X " "' " 8
"' " "' ,.,
8 u
} Fl< N4 FL GN GO
X X X
"' " "' " 8 u
ov OR
" "' X ,., "' u ..
"' " "' ,.,
8 u
.
MZ NS Nl GQ GP
X X X
"' .-<
"' ,., ... u
ou OQ
" "' X " "' u ...
j FE
"' .-<
"' ,.,
8 u
3 N3 GE FH 1
• X X •
liS::> ES::> liS::> liSO >!SO
z
) y _jx
LABEL=GROUP
)
) y
REAR END
6 QK QD QV N~C QJ QB QZFF QA QI Q9 QH Q8 QG Q7 QF Q6 QE QBG QY 5
Xr~~-~--X-~L-~--X-~~-X--~~~-X--~~~-~
FI . FJ
MY
X
FK
X
..
MZ
X
3
z
N6
X
N4
X
N5
X
N3
X
----~·-----------------~----1
NO
FL
. .
I
Nl
FE GE
X
OX OT
GS
X
GR
X
OW OS
X
GN GO
X
ov OR
X
GQ GP
X
OU OQ
X
FH 1
)
)
)
SACS INFORMATION ON
CORRUGATEDPLATES .
reo. 1~. LVVO o:VOMM cg1neer1g uynam1cs
\
i
}
)
)
SACS IV
This example defines parameters for members 301-309 and 307-309 which are chord
members of an X-brace and members 303-309, 305-310 and 310-309 which make up the
two brace elements framing into the chord. The members local Y -axes lie in the plane of
the brace. For members 301-309 and 307-309, a K-factor of 0.9 and a buckling length of
8. 71 is to be used for load cases where the member is in compression and the other pair of
members framing into the chord, 303-309 and 310-309, are in tension. For members 303-
309, 305-310 and 310-309, a K-factor of0.9 and a buckling length of8.55 is to be used
for load cases where the member is in compression and members 301-309 and 307-309 are
in tension. For other load cases, the K-factor and buckling length specified in the model file
are to be used.
1. 2 3 4 5 6 7 8
12345679901234567990123456789012345678901234567890123456789012345678901234567890
MEMBER 301 309 A
MI!:MB2 KY 310 309 303 309 0. 9 S. 71
MEMBER 307 309 A
MBMB2 XY. 310 309 303 30~ 0.9 9.71
MEMBER 303 309 A
MEMB2 XY so1 sog so? 309 0.9 e.ss
MBMBBR 305 310 A
MEMB2 XY 301 309 307 309 0.9 8,55
MBMBER 310 309 A
MBMB2 XY 301 309 307 309 0.9 8.55
2.6.2 Plate Elements
The SACS system contains both triangular and quadrilateral orthotropic flat plate
elements. The element is a true 6-degree of freedom linear strain element. The orthotropic
nature of the flat plate element allows for the modeling of the following plate types:
Isotropic, Membrane, Shear, Stiffened & Corrugated.
The appendices contain a detailed discussion of each plate element type.
2. 6. 2. 1 Isotropic Plates
For isotropic plate elements, the plate name, connecting joints, thickness and material
properties may be specified on the appropriate Plate Description line. A plate group is not
·required. If a plate group is specified, the material properties and thickness are obtained
from the plate group unless overridden on the PLATE line.
The following defines plates AAAA and A.AAJ3. The properties of plate AAAA are
defined directly on the PLATE line while plate AAAB obtains properties from group POL
1 2 s 4 s s 1 e
12345679901234567890123456789012345678901234567890123456789012345678901234567890
PLATE AAAA 601 614· 625 627 0, 5
PLATE AAAB 614 615 627 626P01
2-20
0
0
29.0 0.25 36.0 490.
Release 6: Revision 0
)
SACS IV
2.6.2.2 Membrane and Shear Plates
A PLATE line containing the plate name, connecting joints and plate property group name
is used to defme the plate. The plate type, thickness and material properties are stipulated
au the appropriate PGRUP line. Any plate material properties input on the PLATE line
override those specified for the plate group.
2.6.2.3 Stiffened Plates
A PLATE line containing the plate name, connecting joints and plate property group name
is used to define a stiffened plate. The plate type, material properties, stiffener section
labels, stiffener direction, location (top, bottom or both) and spacing are specified on tlie
appropriate PGRUP input line. Multiple PGRUP lines having the same group label can be
used to describe plates with more than two sets of stiffeners. Plate material properties
input on the PLATE line override those specified for the plate group.
Plate stiffener cross sections may be any shape definable by the SECTION line. Special
stiffener cross sections not available on the SECTION line may be defined using the
PSTIF line. Sections not found in the section library file must be defined in the model
using PSTIF lines. An outline of PSTIF geometty is shown in the diagram following.
The following sample shows plate AAAA defined by group POI. Group POl is a stiffened
plate group with Wl2X26 running along the l90al X axis at 100.0 spacing. Wl2X26 is a
section defined in the section library file.
1 2 3 4 56 7 9
12345678901234567890123456789012345678901234567890123456?89012345678901234567890
.PGROP Po1 1.oooo 2039.o o.2S02532.o ·
PrATE
PLATE AAAA 601 614 625 627P01
2-21
W12X26 100. OOXB 7.849
0
Release 6: Revision 0
)
)
SACS IV
CHL BOX
· 2. 6. 2.4~ yorrugated Plates
Corrugated plates are special plates with a combination of both in-plane and out-of-plaile
stiffness. Corrugated plates are given directly on the PSTIF line by specifying four · ·
parameters A, B, C, and D as shown in the following figure.
The following input defines a corrugated plate 'AAAB' with corrugations running in the
local X direction. The thickness of the plate is 0.25 aod the spacing C is 12. The A aod B
dimensions are 3 aod 3, respectively. With the stiffener spacing unspecified on the PGRUP
line, the stiffener spacing defaults to the C dimension 12. A specification of 'T' or 'B' for
top or bottom stiffeners is unnecessary.
2-22 Release 6: Revision 0
)
)
SACS IV
1 2 3 4 56 7 9
12345678901234567890123456789012345678901234567890123456789012345678901234567890
PST IF
PSTIF CRG CORROl 3.0 3.0 12.0 0.25
PGRUP
PGRUP POl 29.0 36.0 CORROl X 490.0
PLATE
PLATE AAAB 614 615 627 626P01 0
Note: A von Mises check versus an allowable of 0.6Fy is used to check
the corrugated plate. Buckling is not included in the pl~te model
or code check. If buckling can occur, the plate thickness may
require adjustment to limit the plate capacity. The normal
limitations apply such_ as aspect ratio and grid density as with
any FE model. Since the corrugated plate has significant
out-of-plane stiffness, adjacent members are assumed to share-the
load with the corrugated plate.
2.6.2.5 Plate Local Coordinate System
Like beam elements, each plate element has
an associated local coordinate system which
loads and stresses may be defined wi1h
respect to. The plate local X-axis is defined
at 1he plate center line from 1he first
connecting joint specified to 1he second
connecting joint. The local XY plane is
defined by the first 1hree joints wi1h local Y-
axis perpendicular to the local X -axis toward
1he thirdjoint. The right-hand rule is used to
define 1he local Z-axis.
For example, plate 'AAAB' .connected to
+ZL
I )j_
I ,/ I / 4tb(626) 3rd(627)
.1d: z
lst(614) 2nd(615)
joints 614, 615, 627 and 626 has a local X axis from joint 614 to joint 615. The local Y
axis is perpendicular to the local X axis. in 1he direction of joint 627.
1 2 3 4 56 7 8
12345678901234567890123456789012345678901234567890123456789012.~45678901234567890
P~TE AAAB 614 615· 627 626P01 0
2.6.2.6 Plate Offsets
Plate offsets may be used when 1he plate's center plane is not located at 1he plane formed
by 1he connecting joints or when one of 1he edges does not correspond to a line between the
joints to which it is connected. Plate offsets can also be used to generate 1he transition
between 1he flat plates and beam elements. See 1he Commentary for a detailed discussion.
When an offset is stipulated, the program creates a rigid link between 1he plate corner and
1he connecting joint. The offsets describe 1he length of the rigid link and may be described
in local or global rectangular coordinates. The coordinate system used is specified on 1he
PLATE line.
Local Z offsets may be specified directly on the PGRUP line in columns 36-41. For
2-23 Release 6: Revision 0
)
)
SACS IV
stiffened plates, the automatic offset option, which calculates the offset snch that the center
plane of the plate itself lies in the joint plane, may be selected by entering 'Z' in column
10. Any local Z offsets specified are added to the calculated offsets.
The following defines plate groups POI and P02 containing a local Z offset of 10. Group
P02 is a stiffened plate and also has the neutral axis offset option on so that the offset is
measured from the plate center instead of the neutral axis.
1 2 3 4 56 7 9
12345678901234567890123456789012345678901234567890123456789012345678901234567890
PGRUP POl 1.0000 2039.0 0.2502532.0 10.0
PGRUP P02Zl.OOOO 2039.0 0.2502532.0 10.0 W12X26 lOO.OOXB
7.849
7.849
Offsets defining the location of the plate edges are designated on the two PLATE
OFFSETS lines immediately following the PLATE input line. The first offset line contains
the offsets for the first two joints, and the second contains the offsets for the third and
fourth (optional) joint(s). The coordinate system that the offsets are defined with respect to
is designated in column 43 on the PLATE line. Enter '1' for global coordinates or '2' for
local coordinates.
The following defines plate AAAB with global X offSet of 10.0 specified at each joint
1 2 3 4 56 7 8
12345678901234567890123456789012345678901234567990123456789012345678901234567890
PLATE AAAB 614 615 627 626P01
PLATE OP!'SE~S
PLA~E OP?Sl!l'lS
10.0
10.0
2.6.2.7 Skipping from Output Reports·
1
10.0
10.0
A plate may be eliminated from output reports by inputting 'SK' in columns 31-32 on the
PLATE line. If 'SE' is designated for element detail reports on the OPTIONS line, enter
'RP' in columns 31-32 to have the stress and unity check results reported for the particular
plate.
2.6.2.8 Plate Modeling Considerations
Unlike beam elements, flat plate elements are not closed form solutions. Therefore, there
are limitations to the geometry and mesh size that are necessary to generate accurate
stresses and deflections. The following suggestions are made for the use of flat plates in
the SACS system:
I. The aspect ratio (width versus height) for plate elements subjected to out-of-
plane bending should be limited to 6 to 1 for three node plates and 3 to 1 for
four node plates. If the primary plate load is in the plane of the plate then the
aspect ratio can be increased to 10 to 1 for three node plates and 5 to I for
four node plates.
2. Interior angles within a plate should not exceed 180 degrees.
3. Four node plates are limited to 3 degrees of out-of-plane tolerance between the
2-24 Release 6: Revision 0
)
J
SACS IV
four nodes such that the angle between the 'normals' to any triangular
portions of the four node plate cannot exceed this value.
4. For detailed stresses, a mesh size of four nodes by four nodes will accurately
represent a flat plate for both stiffness and stress calculations. A coarser mesh
spacing will result in relatively accurate stiffitess representation but stress
calculations may not represent local stress variations within the plate.
5. Because four node plates are represented internally by 4 three node plates, a 4
node plate is inherently more accurate than a 3 node plate.
6. Plate stresses for traditional "beam-strip theory" plates ai-e ouly reported at
the geometric center of the plate. Plate stresses for DKT plates are reported at
the comer joints and the geometric center. Plate stresses reported at the
geometric center of plates are theoretically more accurate than those at comer
joints.
2.6.3 Shell Elements
The SACS program contains 6 node triangular, and 8 or 9 node rectangular isoparametric
i', •
7Pomt~
shell.elements. Shell elements can have constant thickness or thickness may be specified at
each node. Rigid link offsets can be modeled at each node to allow fur connection
eccentricities.
Material properties including modulus of elasticizy, Poisson's ratio, yield stress, coefficient
of thermal expansion and density are specified either on .the SHLGRP line or on the
SHELL line itself. Shell thickness, if constant, may be specified either on the SHLGRP
line or on the SHELL line. For shells with varying thickness, the thickness at each node is
specified on the SHELL THICK line innnediately following the SHELL line defining the
element
2. 6.3.1 Shell Local Coordinate System
For triangular shell elements, the local X-axis is defmedfrom node one through node three.
The local Y -axis is perpendicular to the local X-axis and lies in the plane formed by nodes
one, three and five. The right-hand rule is used to determine the local Z-axis.
The local X-axis for a rectangular shell is defined by nodes one and three. The local Y -axis
is perpendicular to the local X-axis and lies in the plane formed by nodes one, three and
2-25 Release 6: Revision 0
) BASIC DESIGN LOADS AND LOAD
COMBINATIONS
LDOPT 0PNF+Z64.2 490.0 0.00 O.OOGLOBEN
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS
PROJECT ASSOCIATES JOB NO.= 2033.201
GENERATED BY: LUIS E. SEVILLA FEBRUARY 26, 2008.
******************************************************************************
*
*
*
*
FILE:"SACINP.CONTAINER003"
*
* •
* * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * * ** * * * ** * * * * * * * * *;. * * * * * ** * * ****** * ** * * * ** * **-** * *
*THIS IS AN INPLACE ANALYSIS 6F AN EXISTING CONTAINER MADE OF UN-CONVENTIONAL*
*STEEL SHAPES. tHE CONTAINER WILL BE MODIFIED TO BE UTILIZED As MCC BUILDING.*
*THE MCC BUILING WILL LOCATED ON THE STATE OF COLORADO AND WILL BE EXPOSED TO*
*90 MPH. WIND AND OR TO SNOW. *
*THE BASIC LOADS WILL BE COMBINED TO REPRESENT THE MOST CRITICAL LOADING *
*CONDITION IN THE SERVICE AREA. *
* * ******************************************************************************
*
*
* •
LOAD CONDITION DESCRIPTION:
BASIC LOADS
1) CODED DEAD LOAD (STRUCTURE STEEL)
2) FLOOR DEAD LOAD (1 1/8" THICK MARINE PLYWOOD)
*
·*
*
*
*
*
*
*
*
*
*
* •
*
*
3) EQUIPMENT (ASSUMED 20,000 LBS. EVENLY DISTRIBUTED
4)" SNOW ON ROOF (ASSUMED AT 40 PSF)
ON FLOOR) •
5) WIND LOAD AT 0 DEG. {ASSUMED AT 90 MPH)
6) WIND LOAD AT 90 DEG. (ASSUMED AT 90 MPH)
*
* LOAD COMBINATIONS
* * (1) 7 110% (1)
* (2) 8 100%(7)+100%(2)+100%(3)
* (3) 9 100% (8) +100%'(4) ------.,.-------(GRAVITY LOAD
* (4) 10 100% (8) +100% (5) ------·-------(GRAV.ITY LOAD
* (5) 11 100%(8)+100%(6)-------------(GRAVITY.LOAD
* (6) 12 100%(8)+100%(4)+100%(5)-----{GRAVITY LOAD
* (7) 13 100%(8)+100%(4)+100%(6)-----(GRAVITY LOAD
*
ALLOWABLE STRESS.
+ .SNOW)
+ WIND)
+ WIND)
+ SNOW +WIND)
+ SNOW + WIND)
*
* •
*
* MODIFIER *
* N/A * N/A * N/A *
1.333 *·
1.333 *
1.333 *
1.333 *
* **************~***************************************************************
)
J
SACS POST PROCESSOR
.COMMENTS.
---SACS Rele_ase 5. 2 Engineers and Consultants ID~28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE
***SACS POST PROCESSOR COMMENTS·***
** THE USER SHOULD TAKE NOTE OF THE FOLLOWING COMMENTS REGARDI.NG THE SACS ·POST PROCESSOR OUTPUT **
BEAMS
(1) INTERNAL LOADS FOR MEMBERS ARE PRESENTED IN THE CLASSICAL ENGINEERING SIGN
CONVENTION AS DESCRIBED BY TIMOSHENKO
(2) IF THE AXIAL LOAD ON A MEMBER EXCEEDS THE AISC ALLOWABLE. BUCKLING LOAD,THEN THE
AXIAL UNITY CHECK VALUE FOR THE MEMBER IS SET EQUAL TO 100 TO INDICATE THAT THE
MEMBER HAS BUCKLED
{3) THE MAXIMUM COMBINED UNITY CHECK CAN BE THE MAXIMUM SHEAR UNITY CHECK IF IT-IS
GREATER THAN THE MAXIMUM UNITY CHECK DUE TO BENDING ~ND AXIAL LOAD
( 4) THE FOLLOWING ABBREVIATIONS ARE USED TO DESCRIBE THE CRITICAL UN.ITY CHECK CONDITIONS:
TN+BN -TENSION PLUS BENDING
BEND -BENDING ONLY" (COMP. ALLOWABLES)
C<.lS -COMPRESSION WITH AXIAL LOAD RATIO <.15 {AISC Hl-3)
C>.lSA-COMPRESSION/BENDING INTERACTION WITH CM'S AND-AXIAL LOAD AMPLIFICATION (AISC Hl-1)
C>.lSB -COMPRESSION/BENDING INTERACTION WITHOUT CM'S AND WITHOUT AXIAL LOAD-AMPLIFICATION {AISC Hl-2)
SHEAR -EXCEEDS SHEAR ALLOWABLE
L.BEND-CONES: LOCAL BENDING AT CONE-CYL. INTERFACE
HOOP -CONES: HOOP COMPRESSION OR TENSION
EULER -EULER BUCKLING
HYDRO -HYDROSTATIC COLLAPSE
(5) THE FOLLOWING ABBREVIATIONS ARE USED TO DESCRIBE TSE CRITICAL UNITY CHECK _CONDITIONS FOR CONCRETE:
PLATES
COLBUC-COLUMN.BUCKLING
CM+BN -COMPRESSION WITH BENDING IN COLUMN-ELEMENT
TN+BN -TENSION WITH BENDING IN COLUMN ELEMENT
SHEAR -SHEAR
TORS -TORSION
BENO-Y -PURE BENDING IN BEAM ELEMENT ABOUT LOCAL Y AXIS
REINF -REINFORCEMENT RATIO
(1) MEMBRANE STRESSES ARE GIVEN AT THE NEUTRAL AXIS OF THE PLATE IN THE LOC~L
COORDINATE SYSTEM OF THE PLATE . ALSO THE PRINCIPAL MEMBRANE STRESS AND
MAXIMUM SHEAR STRESS ARE GIVEN
(2) THE DIRECT STRESSES RESULTING FROM OUT OF PLANE BENDING ARE GIVEN AT THE UPPER
SURFACE OF THE PLATE (POSITIVE LOCAL Z DIRECTION) IN THE LOCAL COORDINATE SYSTEM
OF THE PLATE . ALSO THE PRINCIPAL BENDING STRESS AND MAXIMUM SHEAR STRESS ARE GIVEN
{3) THE MAXIMUM PRINCIPAL STRESS AND MAXIMUM SHEAR STRESS FOR THE COMBINED MEMBRANE
AND BENDING STRESS ARE GIVEN . THE UNITY CHECK VALUE IS BASED ON THESE STRESSES
3
)
)
VONMISES STRESS ON PLATES
COMPUTER PLOTS
PLAN VIEW AT Z = 0.000 (FLOOR)
MAX 10.8242 KSI
PLATE=A025 LC= 11
VON MISES STRESS: FOR ALL LCS
• 8.0
• 6.0 • 5. 0 • 4.0 • 3.0 • 2.0
~ Ill 10 ¥ :f ¥-X X >.< X X X. X X X );< X >,( ~ X >,( ~ X ~ >,( );( ),<: ¥ ¥ }f. X X X X X X X X X X X !'J.
X
X
X
X
X
X
!'J. · X )I:: * :k-X ::l:: X )( X :k -.X X X :k X * :k X. ~ X * .. x· ;k :k :k * :*; )( X ';l( 'X X X X X X X X !'J.
PLAN VIEW AT Y = 0.000 (RIGHT EL.)
MAX 4.23800 KSI
PLATE=A615 LC"" 13
VON MISES STRESS: FOR ALL LCS
• 8.0
• 6.0 • 5.0 • 4.0 • 3.0 • 2.0 • XX
X
X
X
X
X
X
X
"
LEFT ELEVATION
MAX 7.12885 KSI
PLATE=A739 LC= 9
VON MISES STRESS: FOR ALL LCS
• 8.0
• 6.0
• 5.0
• 4.0
• 3.0
• 2.0
I X " XX
X
X
X
~ X X X )!: ~ _x X .. :?<:
ROOF PLAN VIEW
MAX 6.69982 KSI
PLATE=A924 LC= 13
VON MISES STRESS: FOR ALL LCS
• 8.0
• 6.0 • 5.0 • 4.0 • 3.0 • 2.0
I
FRONT END EL.
MAX 2. 70300
PLATE,A639 LC=
) VON MISES STRESS:
• 8.0
• 6.R X • 5.0 • 4. 0 • 3.0
I 2 0
ill'Jil *l1l
X
X
) X
X
X
)
KSI
11
fOR ALL LCS
X
XX
X
XX
X X
X
X X
X X
X X
X X
X
X
X
REAR END ELEVATION
MAX 1.68143 KSI
!?LATE=A844 LC= 12
VON MISES STRESS: FOR ALL LCS
I 8.0
I 6.0
I 5.6 X X X XX )(, X XX X X X X X X X X X X XX X
I 4.0 X X
I 3.0
I 2 0 X X
·I J
X X ·X
) X
X X
)
l
)
)
MEMBER UNITY RATIO AND
. MEMBER JUSTIFICATION
)
( )
MEMBER UNITY RATIO AND MEMBER JUSTIFICATIONS
The results of the analysis showed high stresses on members with group labels TST;
TSR; CHB; CS; C6; and Cl. These stresses do not occur due to the way the floor
members are framed to the corrugated steel or flooring material. This is a matter of
modeling rather than the actual loading of the members. Neglect overstress on these
members.
We conclude that the Cargo Container with the proposed modifications for MCC service
is structurally sound and does not requires additional reinforcement.
)
0
0
0
....
J,
:3 ~
z
H
"'
()
H
-"' ·-'~
</)
H
X
" ~
" U)
H
H
()
H
)
0
0
0
0
UTIT11I .1,
T T"JO
X> ~MXX <X~
'~
PARTIAL ROOF PLAN VIEW
y
MIN VALUE=l.OOO
6
"' K
X 1-
D
X
v
X ~
X c
X
J
X
B
X
X ;;
X A
X
I
x-
9
X
H
X
8
X
G
X
7
X
F
X
6
X
E
X
~ a
y
X
1 3
X
DR
QU
EO
QT
DZ
QS
DY
QR
DX
QQ
DW
QP
DV
QO
DU
QN
DT
QM
DS
QL
I :r,,q 6
DP I4 IS I6 I7
E9
E8
E7
E6
I
ES
E4
E3
E2
El
nn ___HZ_ H1 H4 HS
UC MAX COMB LC LIST
MIN VALUE=l.-000
~ Ln,,6'J.,0:.,:1.i.:hLzi '{nJ,:H 19 1A lB lC lD lE 111' lG lH li EltlK lL 1M lN lf'.6:/,Z:J.cJ-I -~~S!\, 1w 2j_i;~.tiJ .!1~, 29 21) .tlJ,p5C~y
X N3 I. :: u
X Fg · : .~: m; i~
X GE Ft Fl 11'< Fl F< FI Fl F' Ft 11'' Fl Fl F< Fl Gl Gl GJ G: G' G! G< G" Gt Gl Gi Gl G(
4
y
~ ~ . ~ ~ ::
!FH ..< .-< .-< S
:fjllSI..<l>I .... :zm.<ll.:TE.OC Hl."I4 J K L M N 0 PI ,-,"" S 'EIU V ·w X U.St2 Jll.O.~ .U.3C 1' lJ.U .:U .2~ 25 26 "';.oHO?
~
y
UC MAX COMB LC LIST
___________________________ .,,_ . .,.
PA~L FLOOR PLAN VIEW MIN VALUE=l.OOO
3 A c 13 14 16 17 18 19 lA lB lC lD lE 6 .11 1. 09 1.06 1.20 1.39 1.26 .1.10 1.39
.
N
X
"' ....
...
F
X .
G FM rn FO FP FQ FR FS FT FU FV FW FX FY F z
X
.
0 "' "! 'C ... ~
I
F
X
1 .05 •. 09 ! ;;. 04 ;.23 1 ;~;. •o j.. 36 ... 05 H i,.74 J .K _L l_l1 N_ _{;
~
y
UC MAX COMB LC LIST
~
PARTIAL FLOOR PLAN VIEW MIN VALUE=l.OOO
1C 10 1E 1F 1G lH 1I lRH lK lL 1M 1N 10 1P 1Q 1R X 1. 66 1. 23 1. 08
FX FY FZ GO Gl G2 G3 G4 G5 G6 G7 GB G9 GA GB GC
·.
·.
m c:
.-<
--"---"'. 12 ,1. 04 0 ~"" n --'l. v lv ,1. 92 10 ,,.. 0 9
y X
UC MAX COMB LC LIST
P~~L FLOOR PLAN VIEW MIN VALUE=l.OOO
10 lP lQ lR lS lU lW 21
1. 66 1.23 1. 08 2.46 1. 53
.
.
2V 39 2m:: F2N 3I
50 I~ 54 Is~ 58
4Z 51 53 55 57
G9 GA GB GC GO 2X 38 3B 3E 3H
48 4A 4C 4E 4G
47 49 48 40 4F
2W -~ 2ll>A '\,/. 3G
"' 'C
rl
y J,.92 10 h09. 12;,-43 fT37 lV lX
y
.·._)
22 23
1.64 1.35 1.2-0
0
~
"'
20 3 2P 3R 2I 3X
SA [;£c\ SE SG l/r
59 SB so SF SH
31 . 3N 3Q 33 3W
4I 4K 4M 40 4Q
4H 4J 4L 4N 4P
2F ~~ 3P 2H l~
~
"' "'
fy64 _:1,212 ;fu.l4
29 2A 28
1.10
2(3JO JX J 24G K6 K 25
sf~ l:'"r
SM 50
SJ SL SN
3Z 42 36
4S 4U 4W
4R JR JS 4T 4V
231 ;_t\ "'"'v
240.. K3 K 2L
" ?fi ?7
UC MAX COMB
2C 4
2..05
SX
sw
sv
su
ST
ss
SR
1-2'8'
X
AY
2U
SQ
SP
EL
2Y
4Y
2T
EK
2
LC LIST
SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 06:52:15 PST PAGE 404
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI ·KSI KSI KSI KSI CHECK
6-DR TST 7 0.00 -o.s -0.8 0.0 0.0 0.1 0.0 -0.46 -l.OS -0.04 -l.SS 0.19 C<.15 0.07 8 -1.3 -l.O -0.1 0.1 0.1 -0.2 -1.25 -1.29' -'0.07 -2.61 0.36 C<.15 0.12 9 -3.8 -12.7 9.0 -1.4 0.7 14.8 -3.55 -16.80 11.97 -32.32 15.00 C>.15B 1.38 10 -1.4 -1.1 -0.3 ·0.1 0.1 -0.2 -1.34 -1.40 -0.40 -3.14 0.33 C<.lS 0.10 ll -1.3 -0.4 -1.3 0.3 0.1 -1.6 -1.27 -0~50 ·-1.72 -3.49 1.85 C<:.15 0.11 12 -3.9 -12.6 6.6 -1.4 0.7 14.9 -3.64 -16.90 11.63 -32.18 14.99 C<.15 1.03 13 -3.6 -12.1 7.6 -1.2 0.7. 1.3.4 .-3.57 -16.01 10.31 -29.89 13.46 C<.15 0.96 7 0.27 -o.-s -0.5 0.1 0.0 0.1 o.o -0.46 -0.68 0.09 -1.23 0.18 C<.l5 0.05 8 -1.3 -0.7 0.2 0.1 0.1 -0.2 -1.25 -0.86 0.23 -2.34 0.36 C<.l5 0.10 9 -3.8 -10.3 4.4 -1.4 0.7 14.8 -3.55 -13.70 5.83 -23.09 15.00 SHEAR 1.04 10 -1.4 -0.7 o.o 0.1 0.1 -0.2 -1.34 -0.96 0.00 -2.30 0.33 C<:.15 0.06 ll -1.3 -0.1 -0.4 0.3 0.1 -1.6 -1.27 -0.17 .-0.52 -1.96 1.85 SH~ 0.10 12 -3.9 -10.4 4.2· -1.4 0.7 14.9 -3.64 -U.8o 5.60 -23.04 14.99 SHEAR 0.78 13 -3.8 -9.8 3.8 -1.2 0.7 13.4 -3 ._57 -13.01 5.09 -21.67 13.45 SHEAR 0.70 7 0.55 -0.5 -0.2 0.2 0.0 0.1 0.0 -0.46 -0.32 0.23 -1.00 0.18 C<.15 0.04 8 -1.3 -0.3 0.4 0.1 0.1 '-0.2 -1.25 -·0.43 0.52 -2.21 0.35 C<.15 0.10 9 -3.8 -8.0 -0.2 ·-1.4 0.7 14.8 -3.55 -10.60 -0~30 -14.46 15.00 SHEAR 1.04 10 -1.4 -0.4 0.3 ().1 0.1 -o-. 2 -1.34 -0.53 0.39 -2.26 0.33 C<.15 0.08 .. ll -1.3 0.1 0.5 0.3 0.1 -1.6. -1.27 0.15 0.69 -2.11 1.85 SHEAR 0.10 12 -3.9 -8.1 -0.3 -1.4 0.7 14.9 -3.64 -10.70 --0.43 -14.77 14.99 SHEAR 0.78 13 -3.8 -7.6 -0.1 -1.2 0.7 13.4 -3.57 ~10.02 -0.14 -13.73 13.45 SHEAR 0.70
BZ-7 TST 7 0.00 c0.2 -0.3 0.1 0.0 -0.1 -0.1 -0•16 . -0.43 0.07 -0.66 0.26 C<:.15 0. 03 8 -0.7 -0.5 0.2 0.1 -0.1 -0.3 . -0.65 -0.70 0.26 -1.62 0.47 C<:.15 0.07 9 -o.s -5.3 -0.2 1.3 -0.-4 10.9 -0.50 -6.98 -0.31 -7.79 11.56 SHEAR 0.80 10 -0.6 -0.4 -0.1 0.0 •0.1 -0.4 -0.55 -0.49 -0.09 -1.13 0.57 C<.15 o .. 04 11 0.1 0.6 -1.5 -1.0 -0.1 -5.4 0.07 0.81 -1.97 2.85 6·.29 SHEAR 0.33 12 -0.4 -5.1 -0.5 1.3 -0.4 10.8 -0.40 -6.76 -0.67 -7.63 11.36 SHEAR 0.59 13 0.2 -4.1 -1.9 0.2 -0.4 5.9 0.22 -5.46 -2.55 8.23 5.64 SHEAR 0.29 7 0.10 -0.2 -0.4 0.1 0.0 -0.1 -0~1 -0.16 -0.55 0.09 -0.79 0.26 C<.15 0.03 8 -0.7 -0.6 0.3 0.1 -0.1 -0.3 -0.65 co.85 0.42 -1.93 0.47 C<:.15 0.08 9 -0.5 -5.8 1.3 . 1.3 -0.4 . 10.9 -0.50 -7.62 1. 77 -9.89 11.56 SHEAR 0.80 10 -0.6 -o.5 0.0 0.0 -0.1 ;:.0.·4 -0.55 -0.67 -0.04 -1.25 0.57 C<.15 0.04 11 0.1 0.5 -2.6 .. -1.0 -0.1 -5.4 0.07 0.68 -3.51 4.26 6.29 SHEAR 0.33 12 -0.4 -5.6 1.0 1.3 -0.4 10.8 -0.40 ..;.7,43 .1.31 -9.14 11.36 SHEAR 0.59 13 0.2 -4.6 -1.6 0.2 -0.4 ·s.9 0.22 -6.08 -2.16 8.46 5.64 SHEAR 0.29 7 0.20 -0.2 -0.5 0.1 o.o -0.1 -0.1 -0.16 -0.67 0.10 -0.93 0.26 C<.lS 0.04
8 -0.7 -0.8 0.4 0.1 -0.1 -0.3 -0.65 -1.01 0.58 -2.24 0.47 C<.15 0.10 9 -0 •. 5 -6.2 2.9 1.3 -0.4 io.9 -o.5o -8.26 3.85 -12.62 11.56 SHEAR o.ao
10 -0.6 -0.6 o.o o.o -0.1 c_o.4 -0.55 -0.84 0.02 -1.41 0.57 C<.15 0.05 11 0.1 0.4 -3.8 c1.0 -0.1 -5.4 0.07 0.56 -5.05 5.67 6.29 SHEAR 0.33 12 -0.4 -6.1 2.5 1.3 -0.4 10.8 -0.40 -8.10 3.30 -11.80 11.36 SHEAR 0 .59· 13 0.2 -5.1 -1.3 0.2 -0.4 5.9 0.22 -6.70 -1.77 8.69 5.64 SHEAR 0.29
SACS Release 5.2 Engineers and Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING ~N-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 403
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX
MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
QZ-QB TSR 7 0.00 o.o 0.3 o.o 0.0 0.0 -0.1 0.01 0.07 0.01 o.oa 0.02 TN+BN 0.00
8 o.o 0.5 -0.1 o.o -0.1 -0.3 0.01 0~11 -0.03 0.16 0.09 TN+BN 0.01
9 -0.1 0.0 -0.2 0.1 0.1 -0.2 -0.02 0.00 -0.05 -0.08 o.os SHEAR 0.01
10 o.o -0.4 1.4 -0.1 0.0 1.2 o.o1 -0.09 0.33 0.43 0.23 TN+BN 0.01
11 -1.3 -14.4 -2.3 0.2 1.0 . -1.6 -0.44 -3.00 -0.53 -3.97 0.83 C<.lS 0.14
12 -0.1 -1.0 1.3 o.o 0.2 1.4 -0.03 -0.20 0.31 -0.54 0.29 C<.15 0.02
13 -1-4 -14.9 -2.3 0.3 1.2 -·1.4 -0.47 -3.12 -0.55 -4.14 0.89 C<.lS 0.14
7 0.20 o.o 0.3 0.0 0.0 o.o -0.1 0.01 0.06 o.oo 0.07 0.02 TN+BN o.oo
8 o.o 0.4 -0.2 o.o -0.1 -0.3 0.01 o.o8 -0.04 0.13 0.09 SHEAR 0.01
9 -0.1 0.1 -0.1 0.1 o.1 -0.2 -0.02 0.03 -0.01 -0.07 0.08 SHEAR 0.01
10 o.o -0.3 1.2 -0.1 o.o 1.2 0.01 -0.0? 0.29 0.37 0.23 TN+BN 0.01
11 -1.3 -11.9 -1.7 0.2 1.0 -1.6 -0.44 -2.48 -0.39 -3.31 0.83 C-:;-.15 0.12
12 -0.1 -0.6 1.3 0.0 0.2 1.4 -0.03 -0.12 0.31 -0.46 0.29 C<.15 0.02
13 -1".4 -12.1 -1.6 0.3 .1.2 -1 •. 4 -0.47 -2.53 -0.37 -3.37 0.88 C<.15 0.12
7 0.40 o.o 0.2 0.0 o.o 0.0 -0.1 0.01 . 0.05 0.00 0.06 0.03 TN+BN o.oo
8 o.o 0.2 -0.2 0.0 -0.1 -0.3 0.01 0.05 . -0.04 0.10 0.09 SHEAR 0.01
9 -0.1 0.3 0.1 0.1 . 0.1. . -0.2 -0.02 . 0.06 . 0.02 -0.10 0.08 SHEAR 0.01
10 o.o -0.3 1.0 -0.1 0.0 1.2 0.01 -0.06 0.25 0.31 0.23 SHEAR 0.01
11 -1.3 -9.4 -1.1 0.2 1.0 "1.6. -0.44 -1.96 -0.25 -2.65 0.83 C<.15 0.09
12 -0.1 -0.2 1.3 o.o 0.2 1.4 -0.03 -o.o5 0.31 -0.39 0.29 SHEAR 0.01
13 -1.4 -9.3 -0.8 0.3 1.2 -1.4 -0.47 -1.95 -0.19 -2.61 0.88 C<.15 0.09
5-DQ TST 7 0.00 -o.5 -o.8 0.1 o.o 0.1 0.0 -:-0~43 -1.05 0.12 -1.61 0.18 C<.15 0.07
8 -1.3 -1.0 0.2 -0.1 0.1 0.2 -1.19 -1.33 o.-26 -2.78 0.34 C<.15 0.12
9 -3.7 -12.7 -8.8 1.4 0.7 -14.9 -3.47' :..16.81 :-11.68--31.96 14.98 C>.lSB 1.36
10 -1.3 -1.1 0.3 :...o.1 0.1 .0.2 -1.25 -1.42 0.45 -3.12 0.32 C<.lS 0.10
11 -1.6 0.2 1.4 -0.4 0.1 4.5 -1.47 0.21 1.81 -3.49 4.43 SHEAR 0.23
12 -3.8 -12.8 -8.7 1.4 0.-7 -14.9 -3.54 -16.89 -11.49 -31.92 14.97 C<.lS 1.02
13 -4.0 -11.5 -7.6 1.1 0.7 -10.6 -3.75 -15.26 -10.13 -29.15 10.86 C<.15 0.93
7 0.27 -o.s -0.5 0~0 0.0 0.1 0.0 -0.43 -0.69 -0.04 -1.16 0.18 C<.15 o.os
8 -1.3 -0.7 -0.1 -0.1 0.1 0.2 -1.19 -0.91 -0.09 -2.19 0.33 C<.lS 0.10
9 -3.7 -10.~ -4.3 1.4 0.7 .C14.9 -3.47 -13.72 -5.64 -22.83 14.98 SHEAR 1. 04
10 -1.3 -0.7 0.0 -0.1 0.1 0.2 -1.25 -0.98 0.05 -2.28 0.32 C<.lS 0.08
11 -1.6 0.5 0.2 -0.4 0.1 4.5 -1.47 0.64 0.20 -2.31 4.43 SHEAR 0.23
12 -3.8 -10.4 -4.2 1.4 0.7 -14.9 -3.54 -13.80 -5.50 -22.84 14.97 SHEAR 0.78
13 -4.0 -9.2 -4.0 1.1 0.7 -10.6 -3;75 -12.17 -5.34 -21.27 10.86 C<.15 0.69
7 0.55 -0.5 -0.2 -0.1 o.o 0.1 0.0 -0.43 -0.33 -0.20 -0.96 0.17 C<.15 0.04
8 -1.3 -0.4 -0.3 -0.1 0.1 0.2 -1.19 -0.48 -0.45 -2.12 0.33 C<.l"S 0.10
9 -3.7 -·a.o 0.3 1.4 0.7 -14.9 -3.47 -10.64 0 •. 40 -14.51 14.98 SHEAR 1. 04
10 -1.3 -0.4 -0.3 ~o.1 oc1 0.2 -1.25 -0.56 -0.36 -2.17 0.32 C<.l5 0.07
11 -1.6 0.8 -1.1 -0.4 0.1 4.5 -1.47 1.07 -1.40 -3.94 4.42 SHEAR 0.23
12 -3.8 -8.1 0.4 1.4 0;7 -14.9 -3.54 -10.71 0.49 -14.74 14.97 SHEAR 0.78
13 -4.0 -6.9 -0.4 1.1 0.7 -10.6 -3.75 -9.09 -0.55 -13.40 10.-86 SHEAR 0.57
SAcs· Release 5.2 Engineers and Consultants ID=28040200 PICEANCE-FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:5.2:~5 PST PAGE 306
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI .KSI KSI KSI KSI CHECK
1-9 CHB 7 o.oo 0.1 1.0 0.0 0.0 -0.1· .o.o 0.06 0.41. -0.1.8 -0.53 0.20 BEND 0.03 8 0.8 18.3 0.0 o.O -1.1 0.0. o.so 7.52 0.26 8.28 2.42 TN+BN 0.38 9 0.7 17.5 -0.3 o.o -1.1 0.0 0.40 7,17 2.55 10.~2 2. 72 TN+BN 0.47 10 0.9 18.0 -0.2 .0.0 -1.1 0.0 0.55 7.41. 1.58 9.54 2.62 TN+BN 0.33 11 0.6 20.8 -5.1 0.4 -1.1 0.0 0.35 8.53 .48.32 57.20 8.56 TN+BN 1. 99 12 0.7 17.2 -0.4 o.o . -1.1 0.0 0.46 7.05 3.87 11.38 2.92 TN+BN 0.40 13 0.4 19.9 -5.4 0.4 -1.1 .0.0 0.26 8.17 50.61 59.04 8.87 TN+BN 2.05 7 0.67 0.1 0.3 0.0 o.o -0.1 o.o 0.06 0.11 -0,10 0.17 0.20 SHEAR 0.01
8 0.8 9.7 0.0 0.0 -1.1 0.0 0.50 3.97 -0.13 4.47 2.41 TN+BN 0.21
9 0.7 8.9 -0.1 .0.0 -1.1 0.0 0.40 3.65 0.72 4.77 2.71 TN+BN 0.22
10 0.9 9.4 0.0 o.o •1.1 0.0 0.55 . :3.87 0.16 4.59 2.61 TN+BN 0.16
11 0.6 11.7 -2.0 0.4 -1·1 0.0 0.35 4.79 18.43 23.58 8.37 TN+BN 0.82
12 0.7 8.7 -0.1 0.0 -1.1 0.0 0.46 . 3.55 1.01 5.02 2.91 TN+BN 0.17
13 0.4 10.9 -2.0 0.4 -1.1 0.0 0.26 -4.47 19.28 24.01 8·.67 TN+BN 0.83
7 1.35 0.1 -0.4 0.0 o.o -0.1 o.o o;o6 --0.18 ·-o.o2 0.24 0.19 SHEAR 0.01
8 0.8 1.1 0.1 o.o -1.1 0.0 0.50 0.44 -0.52 0.94 2.40 SHEAR 0.17
9 0.7 0.4 0.1 o.o -1.1 0.0 0.40 0.15 -1..11 -0.86 2.70 SHEAR 0.19
10 0.9 0.8 0.1 0.0 -1..1 0_.0 0.55 0.35 -1..25 -1.05 2.61 SHEAR 0.14
11 0.6 2.6 1.1 0.4 -1.1 0.0 0.35 1.07 --10.54 -11.26 8.17 SHEAR 0.43
12 0.7 0.1 0.2 o.o -1.1. . 0.0 0.46 0.06 -1.85 -1.45 2.91 SHEAR 0.15
13 0.4 1.9 1.2 0.4 -1.1 0.0 0.26. 0.78 -11..14 -11.66 8.48 SHEAR 0.44
3-ACHB 7 0.00 o-.1 -0.9 0~0 0.0 0.1 o.o 0.04 -0.39 -0.11 -0.46 0.20 BEND 0.02
a 0.7 -18.4 -0.1 0.0 1.1 o.o 0;43 -7.57 0.55 8.55 2.50 TN+BN 0.40
9 0.5 -1-7.5 -0.3 0.0 1.1 ·o.o 0.31 -7.-17 2.95 10.43 2.79 TN+BN 0.48
10 0.8 -18.1 -0.3 0.0 Li 0.0 0.48 -7.43 2.38 10.29 2.74 TN+BN 0.36
11 1.0 -17.0 5.7 -0.4 1.0 0.0 0.61 -6.97 -53.80 -60.16 9.32 BEND 2.11
12 0.6 -17.1 -0.5 o.o 1.1 o.o 0.37 -7.03 4.78 12.18 3.03 TN+BN 0.42
13 0.8 -16.0 5.4 -0.4 1.0 0.0 0.49 -6.57 -51.40 -57.48 9.01 BEND 2. 01
7 0.67 0.1 -0.2 0.0 0.0 0.1 0.0 0.04 -0.09 -0.08 -0.14 0.19 SHEAR 0.01
8 0.7 -9.8 0.0 0.0 1.1 0.0 0.43 ·-4.01 -0.07 4.44 2.49 TN+BN 0.21
9 0.5 -8.9 -0.1 0.0 1.1 o.o 0.31 -3.65 0.89 4.85 2.78 TN-+:BN 0.22
10 o.a -9.5 -0.1 0.0 1.1 0.0 0.48 -3.a9 0.52 4.90 2.73 TN+BN 0.17
11 1.0 -8.7 2.2 -0.4 1.0 o.o 0.61 --3.55 -20.83 -23.77 9.12 BEND 0.85
12 0.6 -8.6 -0.2 o.o 1.1 o.o 0.3-7 -3:53 1.48 5.37 3.02 TN+BN 0.19
13 0.8 -7.8 2.1 •0.4 1.0 . o.o 0.49 -3.19 -l.-9.88 -22.57 8.82 BEND o.8o
7 1.34 0.1 0.5 0.0 o.o 0.1 0.0 0.04 0•19 -0.06 0.23 0.18 SHEAR 0.01
a 0.7 -1.2 0.1 0.0 1.1 0.0 0.43 -0.47 -0.68 0.90 2.48 SHEAR 0.17
9 0.5 -0.4 0.1 0.0 1.1. ·o.o 0.31 -0.15 -1.18 -1.01 2.77 SHEAR 0.19
10 o :a -0.9 0.1 0.0 1.1 o.o 0.48 -0.36 -1:33 -1.21 2.72 SHEAR 0.14
11 1.0 -0.3 -1.2 -0.4 1.0 0.0 0.61 -0.14 11.23 11.98 8.92 SHEAR 0.46
12 0.6 -0.1 0.2 o.o 1.1 ~ 0 .o 0.37 -0.04 -1.83 -1.50 3.01 SHEAR 0.16
13 o.8 0.4 -1.1 -0.4 1.0 o.o 0.49 0.18 10.73 11.41 8.62 SHEAR 0.45
SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08,52•15 PST PAGE 307
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
9-B CHB 7 o.oo 0.1 -0.4 0.0 o.o -0.1 .· 0.0 0.06 -0.18 -0.12 0.24 0.14 BEND 0.01 8 0.8 1.1 0.1 o.o -0.8 0.0 0.50 0.43 -1.12 -1.05 1.66 SHEAR 0.12 9 0.7 0.4 0.2 o .• o -0.8 o.o 0.41 0~15 -1.47 -1.21 1. 70 SHEAR 0.12 10 0.9 0.8 0.1 o.o -0.8 o.o 0.55 0.35 -1.17 -0.96 1.65 SHEAR 0.09 11 0.4 2.7 -3.2 0.5 -0.8 0.0 0.25 1.11 29.94 31.30 9.02 TN+BN 1.09 12 0.7 0.1 0.2 o.o -o.8 0.0 0.46 0.06 -1.52 -1.12 1.69 SHEAR 0.09 13 0.2 2.0 -3.1 o.s -0.8 0.0 0.15 0.82 29.59 30.56 8.95 TN+BN 1.06 7 0.49 0.1 -0.8 0.0 o.o -0.1 0.0 0.06 -0.33 -0.05 0.40 0.14 TN+BN 0.02 8 0.8 -3.6 0.0 o.o -0.8 0.0 . 0.50 -1.46 -0.47 1.96 1.66 SHEAR 0.12 9 0.7 -4.2 0.1 o.o -0.8 o.o 0.41 -1..72 -0.62 2.13 1. 70 SHEAR 0.12 10 0.9 -3.7 0.1 o.o -0.8 0.0 .0.55 . -1.54 -0.53 2.09 1.65 SHEAR 0.09 11 0.4 -2.3 -0.4 0.5 -o.8 o.o 0.25 -0.93 3.88 5.06 8.88 SHEAR 0.46 12 0.7 -4.4 0.1 O·.o -0.8 0.0 0.46 -1.80 -0.68 2.26 1.69 SHEAR 0.09 13 0.2 -2.9 -0.4 0.5 -0.8 o.o 0.15 -1.20 3.72 5.07 6.81 SHEAR 0.46 7 0.98 0.1 -1.2 0.0 o.o -0.1 o.o 0.06 -0.48 0.02 0.56 0.13 TN+BN 0.03 8 0.8 -8.1 0.0 o.o . -0.8 o.o 0.50 C3.34 0.19 4.04 1.65 TN+BN. 0.19 9 0.7 -8.7 0.0 0.0 -0.8 o.o 0.41 -3.58 0.23 4.22 1.69 TN+BN 0.20 10 0.9 -8.3 o.o o.o .o.o.a 0.0 0.55 -3.41 ·o.11 4.08 1.64 TN+BN 0.14 11 0.4 -7.2 2.3 0.5 -o.8 o.o 0.25 -2.97. ..:21. 70 -24.42 8.73 BEND 0.86 12 0.7 -8.9 0.0 o.o -0.8 0.0 0.46 -3.65 0.15 4.26 1.68 TN+BN 0.15 13 0.2 -7.8 2.3 0.5 -0.8 o.o 0.15 -3.21 -21.66 -24.72 8.66 BEND 0.86
A-C CHB 7 0.00 0.1 0.5 o.o o.o 0.1 o.o 0.04 0.19 -0.09 -0.25 0.13 BEND 0.01 8 0.7 -1.1 0.1 o.o o.8 0.0 ·o.43 -0~47 -1.15 -1.19 1.66 SHEAR 0.12 9 0.5 -0.4 0.1 o.o 0.8 o.o 0.31 -0.14 -1.40 -1.23 1.68 SHEAR 0.12 10 0.8 -0.9 0.1 o.o 0.8 o,o 0.48 -0.36 -1.18 -1.05 1.65 SHEAR 0.09 11 1.2 -0.2 3.3 -0.5 0.7 o.o 0.73 -o.1o -30.94 -30.32 8.98 BEND 1. 08 12 0.6 -0.1 0.2 o.o 0.8 0.0 0.37 -0.04 -1.42 -1.09 1.67 SHEAR 0.09 13 1.0 0.6 3.3 -o.s 0.7 0.0 0.61 0.23 -31.19 -30.81 9.00 BEND 1. 09 7 0.49 0.1 0.8 0.0 o.o 0.1 o.o 0.04 0.35 ·-0.05 0.39 0.13 BEND 0.02 8 0 ;7 3.5 0.1 o.o 0.8 o.o 0.43 i.42 -0.52 1.86 1.65 SHEAR 0.11 9 0.5 4.2 0.1 o.o 0.8 0.0 0.31 1.72 -0.63 2.04 1.68 SHEAR 0.12 10 0.8 3.7 0.1 o.o 0.8 . 0~0 0.48 1.52 -0.56 2.01 1.64 SHEAR 0.09 u 1.2 4.1 0.5 -0-5 o. 7 . 0.0 0.73 1.69 -4.43 -5.39 8.83 SHEAR 0.46 12 0.6 4.4 0.1 o·.o 0.8 o.o 0.37. 1.82 -0.66 2.19 1.67 SHEAR 0.09 13 1.0 4.8 0.5 -o.5 0.7 0.0 0.61 1.99 -4.54 -5.92 8.86 SHEAR 0.46 7 0.98 0.1 1.2 o.o o.o 0.1 0.0 0.04 0.49 -0.01 0.53 0.12 TN+BN 0.02 8 0.7 8.1 o.o o.o 0.8 0.0 0.43 3.31 0.12 3.86 1.65 TN+BN 0.18 9 0.5 8.7 o.o o.o 0.8 0.0 0.31 3.59 0.15 4.05 1.67 TN+BN 0.19 10 0.8 8.3 0.0 o.o 0.8 0.0 0.48 3.40 0.0.6 3.95 1.64 TN+BN 0.14 11 1.2 8.5 -2.3 -0.5 0.7 0.0 0.73 3.47 21.60 25.79 8.69 TN+BN 0.90 12 0.6 9.0 o.o o.o 0.8 0.0 0.37 3.67 0.10 4.14 1.66 TN+BN 0.14 13 1.0 9.1 -2.3 -0.5 0.7 0.0 ·o.61 3.74 21.63 25.98 8.71 TN+BN 0.90
SACS Release 5.2 Engineers and_Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08•52•15 PST PAGE 308
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT-MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE ENO FX MY MZ Flt FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-UP KSI KSI KSI KSI KSI CHECK
B-D CHB 7 o.oo 0.1 -1.2 0.0 0.0 . 0.0 0.0 0.06 -0.48 0.03 o.58 0.08 TN+BN 0.03
8 0.8 -8.1 0.0 o.o -o.5 0.0 0.50 -3.34 0.23 4.08 0.96 TN+BN 0.19
9 0.7 -8.7 0.0 0.0 . -0.5 o.o 0.41 -3.58 0.24 4.23 0.95 TN+BN 0.20
10 0.9 -8.3 0.0 0.0 -o.5 0.0 0.55 -3.41 0.30 4.26 0.98 TN+BN 0.15
11 0.2 -7.1 -2.5 0.4 -0.6 0.0 0.13 -2.92 23.41 26.46 7.94 TN+BN 0.92
12 0.7 -8.9 0.0 0.0 -0.5 0.0 0.46 -3.65 0.31 4.42 0.96 TN+BN 0.15
13 0.0 -7.7 -2.5 0.4 -o.5 o.o 0.03 -3.16 23.42 26.61 7.93 TN+BN 0.92
7 0.49 0.1 -1.4 o.o 0.0 0.0 0.0 0.06 -0.57 0.01 0.65 0.07 TN+BN 0.03
8 0.8 -11.0 o.o 0.0 -0.5 o.o 0.50 -4.53 0.09 5.12 0.96 TN+BN 0.24
9 0.7 -11.6 0.0 0.0 .-0.5 o.o 0.41 -4.74 0.10 5.25 0.94 TN+BN 0.24
10 0.9 -11.2 o.o o.o -0.5 o.o 0.55 -4.59 0;09 5.23 0.97 TN+BN 0.1.8
11 0.2 -10.4 0.1 0.4. -0.6 0.-0 0.13 -4~26 -0.65 -4.78 7.80 SHEAR 0.41
12 0.7 -11.7 0.0 0.0 -0.5 0.0 0.46 -4.81 0.09 5.35 0.95 TN+BN 0.19
13 0.0 -10.9 0.1 0.4 -o.5 0.0 0.03 -4.48 -0.64 -5.09 7.78 SHEAR 0.41
7 0.98 0.1 -1.6 o.o 0,0 o.o o.o 0.06 -0.66 ·-o.o1 0.72 0.07 TN+BN 0.03
8 0.8 -13.9 o.o 0.0 -0.5 0.0 0.50 -5.70 -0.04 6.21 0.95 TN+BN 0.29
9 0.7 -14.4 0.0 0.0 -0.5 o.o 0.41 -5.90 -0.04 6.30 0.93 TN+BN 0.29
10 0.9 -14.0 0.0 o.o -o.5 o.o 0.55 -5.76 -0.13 6.31 0.97 TN+BN 0.22
11 0.2 -13.6 2.6 0.4 -0.5 0 .. 0 0.13 -5.59 -24.22 -29.69 7.65 BEND 1. 04
12 0.7 -14.5 o.o o.o -o.5 0.0 0.46 -5.95 -0.12 6.41 0.95 TN+BN 0.22
13 0.0 -14.1 2.6 0.4 -o.5 0.0 0.03 -5.78 -24.22 -29.97 7.64 BEND 1.04
c-13 CHB 7 0.00 0-.1 1.2 0.9 0.0 0.0 0.0 o:o4 0.49 0.06 0.59 0.09 TN+BN 0.03
8 0.7 8.1 0.0 0.0 0.5 0.0 0.43 3.31 0.29 4.03 0.98 TN+BN 0.19
9 0.5 8.7 0.0 0.0 0.5 0.0 0.31 3.59 0.33 4.23 0.97 TN+BN 0.20
10 o.8 8.3 o.o o.o o.s o.o 0.4-8 3.40 0.37 4.25 1.00 TN+BN 0.15
11 1.4 8.6 2.4 -0.4 0.4 0.0 .0.84 3.51 -22.69 -25.36 7.61 BEND 0.91
12 0.6 9.0 0.0 0.0 0.5 0.0 0.36 3.67 0.41 4.44 0.99 TN+BN 0.15
13 1.2 9.2 2.4 -0.4 0.4 o.o 0.72 3.78 -22.64 -25.71 7.58 BEND 0. 92
7 0.49 0.1 1.4 o.o 0.0 o.o 0.0 0.04 o.58 0.01 0.63 0.08 TN+BN 0.03
8 0.7 11.0 0.0 0.0 0.5 0.0 0.43 4.50 0.09 5.02 0.98 TN+BN 0.23
9 0.5 11.6 0.0 0.0 0.5 o.o 0.31 . 4. 75 0.10 5.16 0.97 TN+BN 0.24
10 o.8 11.2 0.0 0.0 0.5 o.o 0.48 4.58 0.09 5.15 0.99 TN+BN 0.18
11 1.4 11.2 -0.1 -0.4· . 0.4 o.o 0.84 4.59 0.83 6.26 7.46 SHEAR 0.39
12 0.6 11.8 0.0 0.0 0.5 0.0 0.36 4.83 0.10 5.29 0.98 TN+BN 0.18
13 1.2 11.8 -0.1 -0.4 0.4 o.o o. 72 4.84 0.84 6.40 7.43 SHEAR 0.39
7 0.98 0.1 1.6 0.0 o.o 0.0 0.0 0.04 0.67 -0.04 0.70 0.08 BEND 0.03
8 0.7 13.8 0.0 o.o 0.5 0.0 0.43 5.68 co.ll 6.12 0.97 TN+BN 0.28
9 0.5 14.4 0.0 0.0 0.5 o.o 0.31 5.90 -0.13 6.22 0.96 TN+BN 0.29
10 0.8 14.0 o.o o.o 0.5 ti.o . 0.48 5~75 -0.19 6.24 0.99 TN+BN 0.22
11 1.4 13.8 -2.5 -0.4 0.4 o-.o 0.84 5.66 23."86 30.36 7.31 TN+BN 1. OS
12 0.6 14.6 0.0 0.0 0.5 0.0 0.36. 5.97 . -0.21 6.34 0.97 TN+BN 0.22
13 1.2 14.3 -2.5 -"0.4 0.4 ____: ·0.0 0.72 5.88 23.85 30.45 7.29 TN+BN 1.06
~Acs Release 5. 2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 322
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT-SHEAR SHEAR TORSI Oil AXIAL BmiDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX sTREss y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI · KSI KSI KSI CHECK
13-14 CHB 7 0.00 0.1 1.6 0.0 0.0 0.0 0.0 0.04 0.67 0.04 0.75 0.04 TN+BN 0.03 8 0.7 13.8 0.0 0.0 0.2 o.o 0.43 5.68 0.18 6.30 0.47 TN+BN 0.29 9 0.5 14.4 o.o o.o 0.2 0.0 0.31 5 •. 90 0.20 6.42 0.45 TN+BN 0.30 10 0.8 14.0 0.0 o.o 0.2 .0. 0 . 0.48 5.75 0.27 6.50 0.48 TN+BN 0.23 11 1.5 13.9 2.1 . -0.4 0.2 o.o 0.95 5.70 -19.76 -24.51 7.26 BEND 0.88 12 0.6 14.6 o.o 0.0. 0.2 0.0 0.36 5.97 0.29 6.63 0.47 TN+BN 0.23 13 1.3 14.4 2.1 -0.4 0.1 0.0 0.83 5.92 -19.74 -24.83 7.24 BEND 0.89 7 0.49 0.1 1.7 0.0 0.0 o.o 0.0 o·.o4 0.70 -O.Ol. 0.73 0.03 TN+BN 0.03 8 0.7 1.5.0 0.0 0.0 0.2 o.o 0.43 6.1.7 -0.12 6.60 0.46 TN+BN 0.31 9 0.5 15.5 o.o 0.0 0.2 o.o 0.31 6.36 -0.13 6.68 0.45 TN+BN 0.31 10 0.8 15.2 0.0 o.o 0.2 0.0 0.48 6.23 -0.12 6.71 0.48 TN+BN 0.23 11 1.5 14.8 -0.4 -0.4 0.2 o.o ·o.95 6.08 3.93 10.96 7.11 TN+BN 0.38 12 0.6 15.6 o.o o.o 0.2 0.0 0.36 6.42 -0.12 6.78 0.46 TN+BN 0.24 13 1.3 15.3 -0.4 -0.4 0.1 0.0 0.83 6.27 3.93 11.04 7.09 TN+BN 0.38 7 0.98 0.1 1.7 0.0 o.o 0.0 o.o 0.04 0.72 -0.06 0-76 0.03 BEND 0.04 8 0.7 16.2 0.0 o.o 0.2 0.0 0.43 6.65 -0.43 7.oa 0.45 TN+BN 0.33 9 0.5 16.6 0.0 0.0 0.2 0.0 0.31 6.81 --0.46 7.13 0.44 BEND 0.34 10 0.9 16.3 0.1 o.o 0.2 0.0 0.48 6.70 -_0.51 7.18 0.47 BEND 0.25 11 1.5 15.7 -2.9 -0.4 0.2 0.0 0.95 . 6.45. 27.14 34.54 6.97 TN+BN 1.20 12 0.6 16.7 0.1 o.o 0.2 o.o 0.36. 6.86 -0.53 7.23 0.46 BEND 0.26 13 1.3 16.1 -2.9 -0.4 0.1 . 0.0 0.83 6.62 27.11 34.56 6.95 TN+BN 1.20
14-15 CHB 7 0.00 0.1 1.7 0.0 o.o o.o o.o 0.04. 0.72 n.os 0.81 0.04 TN+BN 0.04 8 0.7 16.2 o.o o.o -0.1 o.o 0.43 6.65 0.15 7.23 0.28 TN+BN 0.33 9 0.5 16.6 0.0 0.0 -0.1 0.0 0.31 6.81 0.18 7.30 0.31 TN+BN 0.34 10 0.8 16.3 0.0 0.0 -o.1 0.0 0.48 . 6.70 0.24 7.42 0.32 TN+BN 0.26 11 1.7 15.8 1.3 C0.4 -0.1 0.0 1.06 6.49 -i1.96--17.39 7.04 BEND 0.64 12 0.6 16.7 0.0 0.0 -0.1 0.0 0.36 6:86 0.27 7.49 0.35 TN+BN 0.26 13 1.5 16.2 1.3 -0.4 -0.1 0.0 0.94 6.66 -11.94 -17.66 7.05 BEND 0.65 7 0.49 0.1 1.7 o.o o.o 0.0 o.o 0.04 0.69 -0.01 0.72 o.os TN+ EN 0.03 8 0.7 15.7 0.0 0.0 -0.1 0.0 0.43 6.43 0.01 6.87 0.29 TN+BN 0.32 9 0.5 16.0 0.0 o.o -0.1 0.0 0.31 6.57 . 0.00 6.89 0.32 TN+BN 0.32 10 0.8 15.8 0.0 0.0 -0.1 0.0 0.48 6.47 0.01 6.95 0.32 TN+BN 0.24 11 1.7 15.0 -1.1 -0.4 -0.1 0.0 1.06 6.16 10.81 18.03 6.90 TN+BN 0.63 12 0.6 16.1 0.0 o.o -0.1 0.0 0.36 6.61 0.00 6.97 0.35 TN+BN 0.24 13 1.5 15.4 -1.1 -0.4 -0.1 o.o 0.94 6.30 10.81 18.05 6.91 TN+BN 0.63 7 0.98 0.1 1.6 o.o o.o 0.0 o.o 0.04 0.65 -0.08 -0.69 0.05 BEND 0.03 8 0.7 15.1 o.o o.o -0.1 0.0 0.43 6.20 -0.13 6.63 0.30 TN+BN 0.31 9 0.5 15.4 o.o o.o -0.1 0.0 0.31 6.32 -0.17 6.63 0.32 TN+BN 0."31 10 0.8 15.2 0.0 o.o -0.1 o.o 0.48 6.23 -0.23 6.71 0.33 TN+BN 0.23
11 1.7 14.2 -3.5 -0.4 -0,1 0.0 . 1.06 5.83 33.10 39.99 6.76 TN+BN 1.39 12 0.6 15.5 0.0 o.o -0.1 o.o 0.36 6.35 -0.27 6.71 0.36 TN+BN o. 23 13 1.5 14.5 -3.5 -0.4 -0.2 0.0 .0.94 5.94 33.06 39.94 6.77 TN+BN L39
SACS Release 5.2 Engineers and Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 323
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AxiAL BENDING STRESS . COMB. SHEAR CRIT. COMB . CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
15-16 CHB 7 0.00 0.1 1.6 o.o 0.0 o.o o.o 0.04 0.65 0.10 0.78 0.10 TN+BN 0.04 8 0.7 15.1 -:-0.1 o.o -0.4 o.o 0.43 6.20 0.79 7.42 0.99 TN+BN 0.34 9 0.5 15.4 -0.1 0.0 "0.4 0.0. 0.31 6.32 0.83 7.46 1.02 TN+BN 0.35
10 0.8 15.2 -0.1 0.0 . -0.4 0.0 0.48 6.23 0.89 7.60 1.02 TN+BN 0.26
11 1.9 14.3 3.2 -0.4 -0.4 0.0 1.20 5.88 "30.25 -34.93 7.12 BEND 1.25 12 0.6 15.5 -0.1 o.o -0.4 0.0 0.36 6.35 0.93 7.64 1. 06 TN+BN 0.27
13 1.7 14.6 3.2 -0.4 -0.4 o.o 1.08 6.00 -30.20 . -35.12 7.13 BEND 1.26
7 0.4.9 0.1 1.3 0.0 o.o o.o 0.0 0.04 0.55 0.01 0.59 0.11 TN+BN 0.03
8 0.7 12.8 o.o 0.0 -0.4 o·.o 0.43 5 •. 27 0.11 s.ao 0.99 TN+BN 0.27
9 0.5 13.1 0.0 0.0 -0.4 o.o 0.31 5.36 0.10 5.77 1.03 TN+BN 0.27
10 0.8 12.9 0.0 0.0 -0.4 0.0 0.48 5.29 O.ll. s.ea 1.03 TN+BN 0.20
11 1.9 11.8 0.9 .:.o.4 -0.4 0.0 1.20 4.84 -8.56 -12.21 6.99 BEND 0.47
12 0.6 13.1 0.0 o.o -0.4 o.·o 0.36 5.38 0.11 5.85 1.06 TN+BN 0.20
13 1.7 12.0 0.9 -0.4 -0.4 0.0 1.08 4.93 -8.57 -12.42 6.99 BEND 0 .. 47
7 0.98 0.1 1.1 0.0 0.0 0.0 0.0 0.04 '0.44 -0.08 -0.48 0.11 BEND 0.02
8 0.7 10.6 0.1 0.0 -0.4 0.0 0.43 4.33 -0.58 4.76 1.00 BEND 0.23
9 0.5 10.7 0.1 0.0 -0.4 0.0 0.31 4.40 -0.63 -4.72 1.03 BEND 0.23
10 0.8 10.6 0.1 0.0 -0.4 . o.o 0.48 4.34 ..;.0.66 4.82 1. 03 BEND 0.17
11 1.9 9.3 -1.3 -0.4 -0.4 0.0 1.20 3.80 12.63 17.63 6.85 TN+BN 0.61
12 0.6 10.7 0.1 0.0 -0.4 o,o 0.36 4;41 -0.72 -4.77 1. 07 BEND 0.18
13 1.7 9.4 -1.3 -0.4 -0.4 o.o 1-.08 3.86 12.58 17.52 6.85 TN+BN 0.61
16-17 CHB 7 o.oo 0.1 1.1 0.0 0.0 -0.1 o.o 0._04 0.44 o.oe o.ss 0.15 TN+BN 0.03
8 0.7 10.6 0.0 o.'o -0.7 o.o 0.43 4.33 0.26 5.02 1.38 TN+BN 0.23
9 0.5 10.7 o.o 0.0 -0.7 0.0 0.31 4.40 0.27 4.97 1.38 TN+BN 0.23
10 0.8 10.6 0.0 0.0 -0.7 o.o 0.47 4.35 0.33 5.15 -1.41 TN+BN 0.18
11 2.1 9.3 2.5 -0.4 -0.7 0.0 1.30 3.84 -24.02 -26.56 7.59 BEND 0.97
12 0.6 10.7 0.0 o.o -0.7 o.o ·0.35 4.41 0.34 5.11 1.41 TN+BN 0.18
13 1.9 9.5 2.5 -0.4 -0.7 0.0 1.18 3.90 -24.01 -26.73 7.63 BEND 0.97
7 0.49 0.1 0.7 o.o 0.0 "0.1 0.0 0.04 0.28 -0.01 0.31 0.15 TN+BN 0.01
8 0.7 6.6 0.0 0.0 -0.7 0.0 0.43 2.70 -0.16 3.12 1.39 TN+BN 0.14
9 0.5 6.7 0.0 0.0 -0.7 . 0.0 0.31 2.74 -0.06 3.04 1.39 TN+BN 0.14
10 0.8 6.6 0.0 0.0 . -0.7 o.o 0.47 2.70 -0.16 3.17 1.42 TN+BN 0.11
11 2.1 5.1 0.2 -0.4 -0.7 . 0.0 1.30 2.10 -2.20 3.39 7.45 SHEAR 0.39
12 0.6 6.7 0.0 0.0 "0.7 0.0 0.35 2.74 co.o6 3.09 1.41 TN+BN 0.11
13 1.9 5.2 0.2 -0.4 _-0. 7 0.0 1.18 2.14 .-2.10 3.31 7.49 SHEAR 0.39
7 0.98 0.1 0.3 o.o o.o -0.1 o.o 0.04 0.11 -0.10 -0.17 0.16 SHEAR 0. 01
8 0.7 2.6 0.1 o.o -0.7 o.o 0.43 1.06 -0.58 1.48 1.39 SHEAR 0.10
9 0.5 2.6 0.0 0.0 -0.7 0.0 0.31 1.07 -0.39 1.37 1.39 SHEAR 0.10
10 0.8 2.6 0.1 0.0 -0.7 0.0 0.47 1.05 -0.65 1..52 1.42 SHEAR 0.07
11 2.1 0.9 -2.0 -0.4 co.7 o.o .1.30 0.35 19.14 20.79 7.32 TN+BN 0.72
12 0.6 2.6 o.o 0.0 -0.7 o.-o 0.35 1.06 -0.46 1.42 1.42 SHEAR 0.07
13 1.9 0.9 -2.0 -0.4 -0.7 o.o 1.18 0.36 •19.32 20.86 7.36 TN+BN. 0.72
SACS Release 5.2 Engineers. and Consultants ID=-28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08;52;15 PST PAGE 324
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD-FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI. KSI KSI KSI KSI CHECK
17-18 CHB 7 0.00 0.1 0.3 o.o 0.0 -0.1 o.o 0.04 0.11 0.06 0.20 0.18 SHEAR 0.01 8 0.7 2.6 0.0 o.o -1.0 0.0 0.42 1.06 0.38 1.86 1.83 SHEAR 0.13
9 0.5 2.6 -0.1 0.0 -1.0 0.0 0.30 1.07 0.63 2.00 2.03 SHEAR 0.14
10 0.8 2.6 o.o 0.0 -1.0 0.0 0.47 1.05 0.46 1.98 1.87 SHEAR 0.10
11 2.2 0.9 2.0 -0.4 -1.0 o:o 1.40 0.39 -19.34 -18.33 8.42 BEND 0.69
12 0.6 2.6 -0.1 o.o -1.0 0.0 0.35 1.06 0.71 2.12 2.07 SHEAR o-.11
13 2.1 1.0 2.0 -0.4 -1.0 0.0 1.28 . 0.40 -19.09 -16.21 8.24 BEND 0.68
? 0.49 0.1 -0.3 o.o 0.0 -0.1 o.o 0,04 -0.12 0.07 0.22 0.18 SHEAR 0.01
8 0.? -3.1 o.o 0.0 -1.0 0.0 0.42 -1.28 0.35 2.06 1.83 SHEAR 0.13
9 0.5 -3.2 0.0 o.o -1.0 0.0 0.30 -1.30 -0.05 1.60 2.03 BHEAR 0.14
10 0.8 -3.2 0.0 o.o -1.0 0.0 0.47 -1.30 0.33 2.10 1.87 SHEAR 0.10
11 2.2 -5.o -0.4 -0.4 --1.0 o.o 1.40 -2.05 3.49 6.95 8.28 SHEAR 0.43
12 0.6 -3.2 o.o 0.0 -1.0 0.0 . 0.35 -1.31 -0.07 1.66 2.0? SHEAR 0.11
13 2.1 -s.o -0.3 -0.4 -1.0 0.0 1.28 -2.07 3.09 6.44, 8.10 SHEAR 0.42
? 0.98 0.1 -0.8 o.o 0.0 -0.1 0.0 0.04 -0.35 0.09 0.47 0.19 TN+BN 0.02
8 0.? -8.8 o.o 0.0 ,1.0 0.0 0.42 -3.63 0.32 4.38 1.84 TN+BN 0.20
9 0.5 -8.9 0.1 o.o -1.0 0.0 0.30 --3.67 -0.73 -4.09 2.04 BEND 0.20
10 0.8 -8.9 0.0 o.o Cl.O o.o 0.4? -3.66 0.20 4.32 1. 88 TN+BN 0.15
11 2.2 -11.0 -2.7 -0.4 -1.0. o.o 1.40 -4.51 25.84 31.74 8.15 TN+BN 1.10
12 0.6 -9.0 0.1 o.o -1.0 o.o 0.35 -3.?0 -0.85 -4.20 2.08 BEND 0.16
13 2.1 -11.1 -2.6 -0.4 -1.0 0.0 1.28 -4:55 24.79 30.61 7.97 TN+BN 1. 06
18-19 CHB 7 0.00 0.1 -0.8 o.o 0.0 -0.1 0.0 0.04 -0.35 0.23. 0.61 0.38 TN+BN 0.03
8 0.7 -8.8 -0.1 o.o -1.3 0.0 0.42 -3.63 0.95 5.00 3.03 TN+BN 0.23
9 0.5 -8.9 -0.1 0.1 -1.3 o.o 0.30 -3.67 0.75 4.72 3.97 SHEAR 0.28
10 0.8 -8.9 -0.1 0.0 -1.3 0 .• 0 0.4? -3.65 0.9? 5.10 3.01 TN+BN 0.18
11 2.4 -10.9 1.2 -0.4 -1.3 0.1 1.:49 -4.47 :--1.1.11. -14.08 9.27 BEND 0.54
12 0.6 -9.0 -0.1 . 0.1 -1.3 .o.o 0.35 -3.70 . 0.77 4.81 3.95 SHEAR 0.21
13 2.2 -11.0 1.2 -0.3 -1.3 o.o 1.37 ;..4.51 -11.31 -14.45 7.52 BEND 0.55
? 0.49 0.1 -1.5 0.0 0.0 -0.1 0.0 0.04 -0.63 -0.21 -0.81 0.39 BEND 0.04
8 0.7 -16.3" 0.0 0.0 -1.3 0.0 0.42 -6.68 0.06 7.16 3.04 TN+BN 0.33
9 0.5 -16.4 0.3 0.1 -1.3 0.0 0.30 -6.74 -2.77 -9.21 3.97 BEND 0.44
10 0.8 -16.4 0.0 0.0 -1.3 0.0 0.47 --6.71 0.19 7.37 3.01 TN+BN 0.26
11 2.4 -18.6 -0.9 -0.3 -1.3 0.1 1.49 -7.62 8~50 17.62 9.14 TN+BN 0.61
12 0.6 -16.5 0.3 0.1 -1.3 0.0 0.35 -G.?? C2,65 -9.08 3.95 BEND 0.33
13 2.2 -18.7 -0.6 co.3 -1.3 o.o 1.3? -?.68 5.6? 14.72 7.38 TN+BN 0.51
? 0.96 0.1 -2.3 0.1 0.0 ~0.1 o.o 0.04 -0.93 -0.64 -1.53 0.39 BEND 0.07
8 0.7 ..:23.7 0.1 o.o -1.3 0.0 0.42 -9.73 -0.83 10.15 3.04 BEND 0.49
9 0.5 -23.9 0.? 0.1 -1.3 0.0 0.30 . -9.81 -6.29 -15.81 3.98 BEND 0.75
10 0.8 -23 .a 0.1 0.0 -1.3 o.o 0.47 -9.78 -0.60 10.25 3.02 BEND 0.36
11 2.4 -26.3 -2.9 -0.3 -1.3 0.1 1.:49 -10.79 27.62 39.90 9.01 TN+BN 1.39
12 0.6 -24.0 0.6 0.1 -1.3 0.0 0.35 -9.86 -6.06 -15.5? 3.96 BEND 0.55
13 2.2 -26.5 -2.3 -0.3 -1.3 0.0 1.37 -10.87 22.16 34.39 7.25 TN+BN 1.19
~ACS Release 5. 2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 333
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE . END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
1P-1Q CHB 7 o.oo 0.2 -3.0 0.0 o.o 0.2 o.o 0.15 -1.22 -0.13 1.37 0.38 'I'N+BN 0.06 8 1.3 -25.4 o.o 0.0 1.4 0.0 0.79 -10.42 -0.32 11.21 3.20 'I'N+BN 0.52 9 1.1 -23.9 -0.3 0.0 1.3 0.1 0.68 -9.81 3.03 13.52 4.46 TN+BN 0.63 10 1.2 -25.4 o.o 0.0. 1.4 o·.o 0.76 ."-10.41 -·0.40 11.17 3.20 'I'N+BN 0.39 11 2.0 -28.3 -3.4 0.4 1.5 -0.1 1.25 -11.61 32.40 45.27 9.95 TN+BN 1.57 12 1.1 -23.9 -0.3 0.0 L3 . 0.1 . 0.66 -9.80 2.95 13.40 4.45 'I'N+BN 0.47 13 1.8 -26.8 -3.8 004 1.4 0.0 1.14 -11.00 35.75 47.89 9.47 TN+BN 1.66 7 0.49 i).2 -2.0 o.o. o.o 0.2 o.o 0.15 -0.83 -0.01 0.98 0.36 TN+BN o.os 8 1.3 -17.2 0.0 0.0 1.4 o.o 0.79 -7.05 0.14 7.99 3.19 TN+BN 0.37 9 1.1 -16.1 0.0 o.o 1.3 0.1 0.68 -6.61 0.34 7.63 4.45 TN+BN 0.35 10 1.2" -17.2 0.0 o.o 1.4 0.0 0.76 -7.04 0.07 7.88 3.20 TN+BN 0.27 11 2.0 -19.6 -1.3 0.4 1.5 -0.1 1.25 -8.03 1.1.83 21.12 10.08 TN+BN 0.73 12 1.1 -16.1 0.0 o.o 1.3 0.1 0.66 -6.60 0.27 7.53 4.45 TN+BN. 0.26 13 1.8 -18.5 ,1.3 0.4 l.4 0.0 1.14 -7.59 12.03 20.76 9.60 TN+BN 0.72 7 0.98 0.2 -1.1 o.o o.o 0.2 0.0 0.15 -0.44 0.10 0.69 0.37 TN+BN 0.03 8 1.3 -9.0 -0.1 0.0 1.4 0.0 0.79 -3.69 0.61 5.09 3.19 TN+BN 0.24 9 1.1 -6.3 0.2 0.0 1.3 0.1 0.66 . -3.42. -2.35 -5.09 4.45 SHEAR 0.31 10 1.2 -9.0 -0.1 o.o 1.4 0.0 0.76 -3.68 0.55 5.00 3.19 TN+BN 0.17 11 2.0 -10.9 1.0 0.4 1.5 ·-o.l. 1.25 -4~46 -9.22 -12.42 10.21 SHEAR 0.53 12 1.1 -8.3 0.3 0.0 1.3 0.1 0.66 -3Al -2.41 -5.16 4.44 SHEAR 0.23 13 1.8 -10.2 1.3 0.4 1.4 . 0.0 1.14 -4.19 -12.17 -15.22 9.74 BEND 0.57
1Q-1R CHB 7 0.00 0.2 -1.1 o.o o.o. 0.1 . 0.0 0.15 -0.44 0."13 0.73 0.28 'I'N+BN 0.03 8 1.3 -9.0 -0.1 o.o 1.1 o.o 0.79 -3.69 0.88 5.36 2.18 TN+BN 0.25 9 1.1 -8.3 0.3 o.o 1.0 0.0 0.68 -3.42 -3.08 -5.81 2.51 BEND 0.30 10 1-.2 -9.0 -0.1 0.0 1.1 0.0 0.76 -3.68 1.00 5.45 2.21 TN+BN 0.19 11 1.8 -11.0 -3.1 0.4 1.2 o.o 1.15 -4.50 29.67 35.31 9.24 'I'N+BN 1.23 12 1.1 -8.3 0.3 0.0 1.0" o.o 0.66 -3.41 -2.95 -5.71 2.48 BEND 0.22 13 1.7 -10.3 -2.7 0.4 1.1 0.0 .1.04 ·-4.22 25.71 30.97 8.45 TN+BN 1. 08 7 0.49 0.2 -0.3 0.0 0.0 0.1 0.0 0.15 -0.12 0.06 0.32 0.27 SHEAR 0.02 a 1.3 -2.5 -0.1 o.o 1.1 0.0 0.79 -1.03 0.49 2.32 2.18 SHEAR 0.15
9 1.1 -2.2 0.1 0.0 1.0 0.0 0.68 -0.92 -1.16 1.60 2.51 SHEAR 0.17 10 1.2 -2.5 -0.1 o.o 1.1 0.0 0.76 -1.03 0.50 2.29 2.21 SHEAR 0.12 11 1.8 -4.0 -0.5 0.5 1.2 0.0 1.15 -1.62 . 4.64 7.41 9.38 SHEAR 0.49 12 1.1 -2.2 0.1 0.0 1.0 o.o 0.66 -0.91 -1.15 1.57 2.47 SHEAR 0.13 13 1.7 -3.7 -0.3 0.4 1.1 0.0 1.04 -1.51 2.98 5.53 8.58 SHEAR 0.45 7 0.98 0.2 0.5 0.0 0.0 0.1 0.0 0.15 0.21 -0.02 0.36 0. 27 SHEAR 0.02 8 1.3 3.9 0.0 o.o 1.1 . o.o 0.79 1.62 0.10 2.51 2.17 SHEAR 0.15 9 1.1 3.8 -0.1 0.0 1.0 0.0 O.GB 1.58 .0.76 3.02 2.50 SHEAR 0.17 10 1.2 4.0 0.0 0.0 1.1 0.0 0.76 1.62 -0.01 2.39 2.20 SHEAR 0.11
11 1.8 3.0 2.2 0.5 1.2 o.o 1.15 1.24 -20.88 -20.97 9.51 BEND 0.77 12 1.1 3.9 -0.1 0.0 1.0 o.o 0.66 1.59 0.65 2.89 2.47 SHEAR 0.13 13 1.7 2.9 2.1 0.4 1.1 o.o 1.04 1.20 -20.23 -20.38 8.71 BEND 0.74
;Acs Release s . 2 Engi:C.eers and Consultants ID=28040200 PICEANCE fACILITIES MCC BUILDING IN-PLACE ANALYSIS .DATE. 26-FBB-2008 -TIME 08:52:15 PST PAGE 334
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL· BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
1R-1S CHB 7 0.00 0.2 0.5 0.0 o.o 0.1 o.o 0.15 0.21 0.00 0.36 0.21 TN+BN 0.02 8 1.3 3.9 o.o o.o o.8 0.0 0.79 1.62. ·0.04 2.45 1.67 SHEAR 0.12 9 1.1 3.8 -0.1 o.o 0.7 0.0 0.69 1.58 0.61 2.87 . 1.63 TN+BN 0.13 10 1.2 4.0 0.0 0.0 0.8 o.o 0.76 1.63 0.12 2.50 1.68 SHEAR 0.09
11 1.7 2.9 -2~2 0.4 0.9 o.o 1.04 1.20 20.58 22.82 8.10 TN+BN 0.79 12 1.1 3.9 -0.1 0.0 0.7-0.0 0.66 1.59 0.69 2.93 1.65 TN+BN 0.10
13 1.5 2.8 -2.2 0.4 o.8 0.0 0.93 1.16 21.15 23.25 8.07 TN+BN o;a1
7 0.49 0.2 1.2 0.0 0.0 0.1 0.0 0.15 0.47 -0.01 0.63 0.21 TN+BN 0.03
8 1.3 8.7 0.0 0.0 0.8 o.o 0.79 3.57 -0.35 4.36 1.67 TN+BN 0.20
9 1.1 8.2 0.0 0.0 0.7 o.o 0.69 3.38 -0.10 4.06 1.63 TN+BN 0.19
10 1.2 8.7 0.0 0.0 0.8 0.0 0.76 3.58 -0.32 4.34 1.68 TN+BN 0.15
11 1.7 8.2 0.2 0.4 0.9 0.0 1.04 3.37 -2.19 -4.52 8.24 SHEAR 0.43
12 1.1 8.2 o.o o.o 0 .• 7 o.o 0.66 3.38 -0.07 4.04 1.6-4 TN+BN 0.14
13 1.5 7.7 0.2 0.4 o .• 8 0.0 0.93 3.17 -1.95 -4.18 8.21 SHEAR 0.43
7 0.98 0.2 1.8 0.0 0.0 0.1 0.0 0.15 0.73 -o·.o1 0.89 0.20 TN+BN 0.04
8 1.3 13.5 0.1 0.0 o.a o.o 0.79 5.52 -0.73 6.31 1.66 TN+BN 0.29
9 1.1 12.6 0.1 o.o 0.7 0.0 0.69 5.17 -0.81 5.85 1.62 BEND 0.28
10 1.2 13.5 0.1 0.0 o.8 o.o 0.76 5.52 -0.75 6.29 1.67 TN+BN 0.22
11 1.7 13.5 2.7 0.4 0.9 o.o 1.04 5.53 ""25_.45 -29.94 8.37 BEND 1. 08
12 1.1 12.6 0.1 0.0 0.7 0.0 0.66 5.17 -0.84 5.83 1. 64 BEND 0.21
13 1.5 12.6 2.7 0.4 0.8 0.0 0.93 5 .l. 7 -25.53 -29.77 8.34 BEND 1.07
1S-1U CHB 7 0.00 0.2 1.8 0.0 0.0 0.1 o·.o 0.15 0.74 -0.02 0.89 0.21 TN+BN 0. 04
8 1.3 13.4 0.1 o.o 0.5 0.0 0.79 5.52 -0.71 6.31 1.06 TN+BN 0.29
9 1.1 12.6 0.1 0.0 0.4 o.o 0.69 5.16 -0.82 5.85 1. 03 BEND 0.28
10 1.2 13.5 0.1 0.0 0.5 0,0 .0.76 5.52 -0.54 6.28 0.98 TN+BN 0.22
11 1.5 13.4 -1.4 0.5 0 .. 6 o.o 0.94 5.49 12.91 19.34 9. 73 TN+BN 0.67
12 1.1 12.6 0.1 o.o . o,4 0.0 0.66 5.17 :-0.65 5.83 0.95 TN+BN 0.20
13 1.3 12.5 -1.4 0.5 0.5 0.0 0.84 5.14 12.79 18.77 9.63 TN+BN 0.65
7 0.60 0.2 2.4 0.0 o.o 0.1 0.0 0.15 0.98 -0.07 1.13 0.20 TN+BN 0. OS
8 1.3 16.9 0.0 o.o 0.5 0.0 0.79 6.95 -0.35 7.74 1. OS TN+BN 0.36
9 1.1 15.6 0.0 o.o 0.4 0.0 0.69 6.41 -0.28 7.09 1. 02 TN+BN 0.33
10 1.2 16.9 0.1 o.o 0.5 0.0 0.76 6.95 -0.51 7.71 0.98 TN+BN 0.27
11 1.5 17.5 2.6 0.6 0.6 .0.0 0.94 7.16 -24.14 -30.36 9.89 BEND 1. 09
12 1.1 15.6 0.0 0.0 0.4 0.0 0.66 6.41 "0.43 7.07 0.95 TN+BN 0.25
13 1.3 16.1 2.5 0.6 0.5 0.0 0.84 6.62 -24.06 -29.84 9.79 BEND 1. 07
7 1.19 0.2 3.0 0.0 o.o 0.1. 0.0 0.15 L22 -0.12 1.37 0.19 TN+BN 0.06
8 1.3 20.4 0.0 0.0 0.5 o.o 0.79 8.37 0.00 9.17 1.05 TN+BN 0.42
9 1.1 18.6 0.0 o.o 0.4 0.0 0.69 7.64 0.27 8.59 1.01 TN+BN 0.40
10 1.2 20.4 0.1 o.o 0.5 0.0 0.76 8.37 -0.47 9.13 0.97 TN+BN 0.32
11 1.5 21.5 6.6 0.6 0.6 0.0 0.94 8.82 -61.90 -69.78 10.06 BEND 2.46
12 1.1 18.6 0.0 o.o 0.4 o.o 0.66 . 7.64 -0.21 8.29 0.94 TN+BN 0.29
13 1.3 19.7 6.5 0.6 0.5 o.o . 0.84 8.08 -61.63 -68.88 9.96 BEND 2.42
~ACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 335
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX sTREss y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS taPS IN-KIP KSI KSI KSI KSI KSI CHECK
1T-1V CHB 7 o.oo 0.2 -3.0 0.2 0.0 0.1 o.o 0.14 -1.23 -1.89 -2.98 0.57 BEND 0.14 8 1.2 -20.5 1.2 -0.1 0.6 0.0 0.78 -8.41 -~1.61 -19.25 3.62 BEND 0.93 9 1.0 -18.7 1.0 -0.1 0.5 0.0 0.65 -7.67 .-9.64 -16.66 3.08 BEND 0.80 10 1.2 -20.5 1.2 -0.1 . 0.6 o.o 0.75 -8.41 -10.95 -18.61 3.49 BEND 0.67 11 1.9 -23 .o 6.2 -0.7 0.7 o.o. 1.17 -9.46 -58.73 -67.01 13.02 BEND 2 . .37 12 1.0 -18.7 1.0 . -0.1 0.5 o.o 0.62 -7.67. -8.98 -16.03 2.94 BEND o .sa 13 1.7 -21.2 6.0 -0~7 0.6 . 0.0 1.04 -8.72 -56-.76 -64.43 12.47 BEND 2.27 7 0.54 0.2 -2.4 0.0 0.0 0.1 o.o 0.14 -1.00 -0.43 -1.30 0.58 BEND 0.07 8 1.2 -16.8 0.3 -0.1 0.6 o.o 0.78 -6.90 -2.68 -8.81 3.63 BEND 0.44 9 1.0 -15.4 0.2 -0.1 0.5 o.o 0.65 -6.30 -2.21 -7.86 3.08 BEND 0.39 10 1.2 -16.8 0.3 -0.1 0.6 o.o 0.75 -6.91 -2.54 -8.69 3.49 BEND 0.33 11 1.9 -18.6 1.6 -0.7 o-.7 o.o 1.17 -7.65 -14.77 -21.24 13.18 BEND 0.78 12 1.0 -15.4 0.2 -0.1 0.5 o.o 0.62 -6.31 -2.06 -7.75 2.95 BEND 0.29 13 1.7 -17.2 1.5 -0.7 0.6 0.0 1.04 -7~05 -14.29 -20.30 12.63 BEND 0.74 7 1.08 0.2 -1.9 -0.1 0.0 0.1 o.o . 0.14 -0.76 1.02 1.92 0.58 TN+BN 0.09 8 1.2 -13.1 -0.7 -0.1 0.6 o.o 0.78 -5.39 "6.25 12.41 3.63 TN+BN 0.57 9 1.0 -12.0 -0.6 -0.1 0.5. 0.0 0.65 -4.93 5.22 10.81 3.09 TN+BN o.so 10 1.2 -13.1 -0.6 -0.1 0.6 0.0 0.75 -5.40. · 5.88 12.02 3.50 TN+BN 0.42 11 1.9 -14.2 -3.2 -0.7 0.7 ·o.o 1.17 -5 .• 83 29.78 36.78 13.34 TN+BN 1.28 12 1.0 -12.0 -0.5 -0.1 0.5 ·o.o 0.62 -4.94 4.85 10.41 2.95 TN+BN 0.36 13 1.7 -13.1 -3.0 -0.7 0.6 o.o. 1.04 -5.37 28.76 35.17 12.80 TN+BN 1.22
lU-lW CHB 7 0.00 0.3 3.0 0.2 0.0 -0.1 o.o 0.16 1.22 -1.94 -3.01 0.58 BEND 0.15 8 1.3 20.4 1.3 -0.1 -0.6 . o.o 0.82 8.39 -11.95 -19.52 3.68 BEND 0.94 9 1.1 18.6 1.0 -0.1 -0.5 0.0 ·0.71 7.65 -9.90 -16.84 3.12 BEND 0.81 10 1.3 20.4 1.2 -0.1 -0.6 o.o 0.78 8.39 -11.55 -19.15 3.59 BEND 0.69 11 1.1 21.4 -3.5 0.4 -0.6 o.o 0.69 8.80 33.26 42~75 7.63 TN+BN 1.48 12 1.1 18 .• 6 1.0 -0.1 -o.5 o.o 0.67 7.65 -9.50 -16.47 3.03 BEND 0.60 13 0.9 19.6 -3.7 0.4 -0 .. 5 0.0 o.58 8.06 35.31 43.95 7.88 TN+BN 1.53 7 0.54 0.3 2.4 o.o 0.0 -0.1 o.o 0.16 1.00 -0.45 -1.29 0.58 BEND 0.07 8 1.3 16.6 0.3 -0.1 -0.6 0.0 0.82 6.89 -2.78 -8.85 3.66 BEND 0.45 9 1.1 15.3 0.2 -0.1 -o.5 0.0 o. 71 6.29 -2.28 -7.87 3.12 BEND 0.40 10 1.3 16.8 0.3 -0.1 -0.6 0.0 0.78 6.89 -2.70 -8.81 3.60 BEND 0.33 11 1.1 17.7 -0.9 0.4 -0.6 o.o 0.69 7.26 8.77 16.72 7.79 TN+BN 0.58 12 1.1 15.3 0.2 -0.1 -0.5 o.o 0.67 6.29 ·-2 .• 21 -7.83 3.04 BEND 0.30 13 0.9 16.2 wl.O 0.4. ~o.s o.o o.5a 6.66 9.26 16.51 8.04 TN+BN 0.57 7 1. 08 0.3 1.9 -0.1 0.0 -0.1 0.0 0.16 0.76 1.04 1.96 0.59 TN+BN 0.09 8 1.3 13.1 -0.7 -0.1 co.6 . 0.0 . 0.82 5.38 6.39 12.59 3.69 TN+BN 0.58 9 1.1 12.0 -0.6 -0.1 -0.5 o.o 0.71 4.93 5.33 10.97 3.13 TN+BN 0.51 . 10 1.3 13.1 -0.6 -0.1 -0.6 0.0 0.78 5~38 6.14 12.30 3.61 TN+BN 0.43 11 1.1 13.9 1.7 0.4 -0.6 o.o 0.69 5.71. -16.31 -21.32 7.95 BEND 0.76 12 1.1 12.0 -0.5 -0.1 co.5 o;o .0.67 4.-93 s.oa 10.68 3. 04 'I'N+BN 0.37 13 0.9 12.8 1.8 0.4 _ -o.5 0.-0 o.58 5.25 -17.37 -22.04 8.20 BEND 0.79
3ACS Release 5.2 Engineer_~ and Consultants· ID=28040200
PICEANCE FACILITIES-MCC BUILDING IN-PLACE ANALYSIS DATE 26~FEB-2008 TIME 08:52:15 PST PAGE 339
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
21-22 CHB 7 0.00 0.3 0.5 0.0 o.o -0.1 0.0 0.16 0.22 0.28 0.65 0.37 TN+BN 0.03
8 1.3 4.1 -0.2 o;o -0.8 0.0 0.83 1.69 1.84 4.36 2.54 TN+BN 0.20
9 1.2 3.7 -0.2 0.1 -0.7 o.o o. 72 1.53 1.94 4.20 2.74 TN+BN 0.19
10 1.3 4.1 -0.2 o.o -0.8 . 0.0 0.80 1.69 2.05 4.53 2.61 TN+BN 0.16
11 0.8 5.2 -1.9 0.3 -0.8 0.0 0.52 2.12 17.58 20.22 6.59 TN+BN 0.70
12 1.1 3.8 -0.2 0.1 -0.7 o.o 0.68 1~54 2.15 4.38 2~80 TN+BN 0.15
13 0.7 4.8 -1.9 0.3 -0.7 0.0 0.41 1..97 1.7.69 20.07 6.79 TN+BN 0.70
7 0.55 0.3 -0.2 o.o 0.0 -0.1 o.o 0 .1.6 -0.09 -0.16 0.25 0.38 SHEAR 0.03
8 1.3 -1.2 0.1 0.0 -0.8 o.o 0.83 -0.47 -0.95 1.30 2.55 SHEAR O.J.B
9 1.2 -1.2 0.2 0.1 -0.7 o.o 0.72 -0.48 -2.33 -2.09 2.74 SHEAR 0.19
10 1.3 -1.1 0.1 0.0 -0.8 o.o 0.80 -0.47 -0.99 1.26 2.6J. SHEAR O.J.4
ll 0.8 0.0 0.2 0.3 -0.8 0.0 . 0.52 0.01 -1..54 -1.03 6.75 SHEAR 0. 35
12 1.1 -1.1 0.3 0.1 -0.7 0.0 0.68 -0.47 -2.37 -2.16 2.81 SHEAR 0.15
13 0.7 0.0 0.3 0.3 -0.7 o.o 0.41 0.01 -2.92 -2.53 6.95 SHEAR 0.36
7 1.10 0.3 -1.0 0.1 o.o -0.1 0.0 0;16 -0.41 -0.60 -0.86 0.38 BEND 0.05
8 1.3 -6.4 0.4 o.o -o.8 o.o 0.83 -2.64 -3.73 -5.54 2.56 BEND 0.29
9 1.2 -6.1 0.7 0.1 -0.7 0.0 0.72 -2.50 -6.61 -8.38 2.75 BEND 0.42
10 1.3 -6.4 0.4 0.0 -o.8 0.0 0.80 -2.63 -4.02 -5.86 2.62 BEND 0.23
11 0.8 -5.1 2.3 0.3. -0.8 0.0 0.52 ~2.10 -21.27 -22.85 6.91 BEND 0.81
12 1.1 -6.1 0.7 0.1 -0.7 0.0 0.68 -2.49 -6.90 -8.71 2.81 BEND 0.33
13 0.7 -4.8 2.6 0.3 co.? o.o 0.41 -1.96 -24.l.S -25.70 7.12 BEND o. 91
22-23 CHB 7 0.00 0.3 -1.0 0.1 0.0 -0.1 0.0 0.16 -0.41 -1..00 -1.25 0.71 BEND 0.07
8 .1.4 -6.4 0.7 -0.2 -1.1 o.o 0.84 -2--~4 _-6.17 -7.97 4.55 BEND 0.41
9 1.2 -6.1 1.1 -0.3 -0.9 0.0 0.73 -2.49 -io.2p -12.01 6.51 BEND 0.59
10 1.3 -6.4 0.6 -0.2 -1.1 o .. o 0.80 -2.63 -6.04 -7.86 4.56 BEND 0.30
11 0.6 -5.2 -1.3 0.1 -1.0 o.o 0.35 -2.13 12.02 14.49 3.90 TN+BN 0.50
12 1.1 -6.1 1.1 -0.3 -0;9 0.0 0.69 -2.49 ·-10.12 -11.91 6.52 BEND 0.44
13 0.4 -4.8 -0.8 0.0 -0.9 0.0 0.24 -1.99 7.93 10.16 2.43 TN+BN 0.35
7 0.55 0.3 -2.0 -0.1 o.o -0.2 0.0 0.16 -0.81 0.61 1.58 0.71 TN+BN 0.07
8 1.4 -13.4 -0.3 -0.2 -1.1 o.o 0.·84 -5.49 3.28 9.61 4.55 TN+BN 0.44
9 1.2 -12.3 -0.9 -0.3 -1.0 0.0 0.73. '"';5.06 8.35 14.14 6.51 TN+BN 0.65
10 1.3 -13.4 -0.4 -0-.2 -1..1 o.o 0.80 -5.48 3.46 9.74 4.57 TN+BN 0.34
ll 0.6 -12.0 -0.5 0.1 -1.0 o.o 0.35 ~4.93 5.08 10.36 4.06 TN+BN o'.36
12 l.1 -12.3 -0.9 -0.3 -0.9 o.o 0.69 -5.05 8.53 14.28 6.52 TN+BN 0.50
13 0.4 -11.0 '1.1 0.0 -0.9 0.0 0.24 -4.50 10 •. 15 14.89 2.28 TN+B~ 0.52
7 1.10 0.3 -3.0 -0.2 0.0 -0.2 o.o 0.16 -L22 2.21 3.59 0.72 TN+BN 0.17
8 1.4 -20.4 -1.3 -0.2 -l.l o.o 0.84 -8.36 12.72 21.92 4.56 TN+BN 1.01
9 1.2 -18.6 -2.9 -0.3 "1.0 0.0 0.73 -7.64 26.95 35.32 6.52 TN+BN 1.64
10 1.3 -20.3 -1.4 -0.2 -1.1 o.o 0.80 -8.34 12.96 22.10 4.57 TN+BN 0.77
ll 0.6 -18.9 0.3 0.1 -1.0 0.0 0.35 -7.74 -2.46 -9.84 4.22 BEND 0.35
l2 1.1 -18.6 -2.9 -0.3 -l.O o.o 0.69 -7.63 27.18 35.50 6.53 TN+BN 1. 23
13 0.4 -17.1 -1.2 0.0 -0.9 o.o 0.24 -7.02 11.77 19.03 2.13 TN+BN 0.66
;Acs Release 5.2 Engineers and Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 340
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX
MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AxiAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX S'l'RESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI Ksi KSI KSI KSI CHECK
23-24 CHB 7 0.00 0.0 -1.9 0.0 0.0 0.1 0.0 0.00 -0.77 -0.41 -1.18 0.21 Co::::.15 0.05
8 -0.1 -13.1 0.1 o.o 0.7 0.0 -0.06 -5.39 -0.66 -6.11 1..56 Co::::.15 0.28
9 -0.1 -12.7 1.2 -0.1 0.7 0.0 -0.05 -5.19 -11.68 -16.93 2.89 C<.15 0.78
10 -0.2 -12.9 0.-1 o.o 0.7 o·.o -0.13 -5.31 ·-0.87 -6.31 1.55 C<.l5 0.22
11 1.1 -16.6 -2.0 0.4 .0.8 0.0 0.68 -6.83 19.28 26.78 8.35 TN+BN 0.93
12 -0.2 -12.4 1.3 ·. -0.1 0.7 0.0 -0.12 -5.11 -11.89 -17.12 2.86 C<.15 0.60
13 1.1 -16.1 -0.9 0.3 ·o. 7 0.0 0.69 -6.63 8.25 15.57 6.66 TN+BN 0.54
7 0.55 0.0 -1.2 0.0 0.0 0.1 0.0 o.oo -0.49 -0.35 -0.85 0.21 C<.15 0.04
8 -0.1 -8.6 0.2 0.0 0.7 o.o -0.06 -3.54 -·1.61 -5.21 1.56 C<.15 0.24
9 -o.1· -8.3 0.6 -0.1 0.7 o.o -o.o5 -3.40 "5.90 -9.35 2.88 C<.15 0.43
10 -0.2 -8.5 0.2 o.o 0.7 o;o -0.13 -3.48 -1.87 -5.48 1.55 C<.15 0.19
11 1.1 -11.6 0.9 0.4 0.8 0.0 0.68 -4.78 -8.10 -12.20 8.50 BEND 0.45
12 -0.2 -8.2 0.7 -0.1 .· 0.6 0.0 -0.12 -3.35 .-6.16 -9.62 2.85 Co::::.15 0.33
13 1.1 -11.3 1.3 0.3 0.7 0.0 0.69 -4.64 C12.39 -16.34 6.81 BEND 0.59
7 1.10 0.0 -0.6 0.0 o.o 0.1 0.0 . o.oo -0.23 -0.29 -0.52 0.20 C<.15 0.02
8 -0.1 -4.1 0.3 0.0 0.7 0.0 -0.06 -1.69 -2.56 -4.31 1.55 C<.15 0.20
9 -0.1 -4.0 o.o -0.1 0.7 0.0 -0.05 -1.62 -0.11 -1.78 2.87 SHEAR 0.20
10 -0.2 -4.1 0.3 0.0 0.7 0.0 -0.13 -1.67 . -2.87 -4.67 1.54 C<.15 0.16
11 1.1 -6.7 3.8 0.5 0.8 0.0 0.68 -=2.73 -36.09 -38.15 8.65 BEND 1.35
12 -0.2 -3.9 o.o -0.1 0.6 . o-.o -0.12 -1.60 -0.42 -2.14 2.84 SHEAR 0.15
13 1.1 -6.5 3.6 0.3 0.7 0.0 0.69 -2.66 -33.64 -35.62 6.96 BEND 1.26
24-29 CHB 7 0.00 o.o -0.6 0.0 o.o 0.1 0.0 0.00 -0.23 -0.17 -0.40 0.19 Co::::.15 0.02
8 -0.1 -4.1 0.1 0.0 0.4 0.0 -0.06 -1.70 -1.33 -3.09 1.24 C<.15 0.14
9 -0.1 -4.0 o.o o.o 0.4 0.0 -o.os C1.63 -0.35 -2.03 1.06 C<.15 0.09
10 -0.2 -4.1 0.1 o.o 0.4 0.0 -0.14 -1.67 -0.86 -2.67 1.14 Co::::.15 0.09
11 0.6 -6.1 -3.2 0.3 0.4 0.0 0.34 -2.49 30.66 33.50 6.54 TN+BN 1.16
12 -0.2 -3.9 0.0 0.0 0.4 o.o -0.12 -1.60 0.12 -1.73 0.96 C<.15 0.06
13 0.6 -5.9 -3.3 0.4 o.s 0.0 0.36 -2.43 31.64 34.42 6.68 TN+BN 1. 20
7 0.60 0.0 -0.1 0.0 0.0 0.1 o.o ·0.00 ·-0.06 0.04 0.10 0.18 SHEAR 0.01
8 -0.1 -1.4 0.0 0.0 0.4 o,o -0.06 -0.58 0.22 0.73 1.24 SHEAR 0.09
9 -0.1 -1.2 -0.1 0.0 0.4 0.0 -0.05 -0.49 0.50 0.94 1.06 SHEAR 0.07
10 -0.2 -1.4 0.0 0.0 0.4 0.0 -0.14 -0.58 0.32 0.76 1.13 SHEAR 0.06
11 0.6 -2.9 -0.7 0.4 0.4 o.o 0.34 -l..l.? 6.56 8.07 6.70 SHEAR 0.35
12 -0.2 -1.2 -0.1 o.o 0.4 0 .. 0 -0.12 C0.49 0.60 0.97 0.95 SHEAR o.os
13 0.6 -2.6 -0.7 0.4 0.4 0.0 0.36 -1.09 6.84 8.28 6.84 SHEAR 0.36
7 1.21 0.0 0.3 0.0 0.0 0.1 o.o 0.00 . 0.11 0.25 0.35 0.18 Co::::.lS 0.02
8 -o.1· 1.3 -0.2 0.0 0.4 0.0 -0.06 0.54 1.76 2.23 1.23 Co::::.lS 0.11
9 -0.1 1.6 -0.1 0.0 0.4 o.o -0.05 0.65 1.35 1.94 1.05 C<.15 0.09
10 -.0.2 1.2 -0.2 O.o 0.4 o.o -0.14 0.50 1.50 1.86 1 .. 12 C<.15 0.07
11 0.6 0.3 1.9 0.4 0.4 o.o 0.34 0.14 -i8.28 -18.07 6.87 BEND .o. 64
12 -0.2 1.5 -0.1 0.0 0.4 0.0 -0.12 0.60 1.09 1.57 0.94 C<.l5 0.06
13 0.6 0.6 2.0 0.4 0.4 0.0 ·o.36 o:24 -18.69 -18.58 7.01 BEND 0.66
ACS Release-5.2 Engineers and ConsU-ltailts ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FBB-2008 TIME 08:52:15 PST PAGE 344
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT sli"EAR SHEAR TORSION ·AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY ·vz-MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
2B-2C CHB 7 0.00 o.o 1.3 0.0 0.0 o.o 0.0 -0.01 0.51 0.28 0.78 0.14 C<.lS 0.04
8 -0.1 6.7 -0.3 o.o -0.1 0.0 -0.09 2.77 2.74 5.42 1.24 C<.l5 0.26
9 -0.1 7.3 -0.3 0.0 0.0 0.0 -0.07 3.00 .2.46 5.40 1.05 C<.lS 0.26
10 -0.3 6.3 -0.4 0.1 -0.1 o.o -0.17 .2.59 3.44. 5.86 1.46 C<.l.S 0.22
11 -0.1 8.1 -3.0 . 0.4 o.o 0.0 -0.04 3.34 28.24 31.54 7.05 C<.15 1.10
12 -0.2 6.9 -0.3 0.1 -0.1 0.0 .,;.0.1.5 2.82 3.16 5.84 1.27 C<.lS 0.21
13 0.0 8.7 -3.0 0.4 0.0 0.0 -0.02 3.58 27.96 31.52 6.93 C<:.lS 1.10
7 0.60 o.o 1.3 o.o o.o o.o o.o ---0.01. 0.54 -0.03 -0.58 0.14 C<.l.S 0.03
8 -0.1 6.3 0.0 0.0 -0.1 .0.0 -0.09 2.57 -0.21 -2.87 1.25 C<.l5 0.13
9 -0.1 7.0 o.o o.o 0.0 0.0 -0.07 2.88 -0.23 -3.18 1.06 C<.15 0.15
10 -0.3 5.7 o.o 0.1 -0.1. 0.0. -0;1? 2.35 -0.33 -2.85 1.46 C<.l5 0.10
11 -0.1 8.1 -0.1 0.4 o.o 0.0 -0.04 3.34 0.73 4.03 7.23 SHEAR 0.38
12 -0.2 6.5 0.0 0.1 -0~1 o.o -·0.15 2.66--0.35 -3.16 ~.28 C<.l5 0.~~
13 o.o 8.9 -0.1 0.4 0.0· 0.0 -0.02 3.65 0.71 4.34 7.11 SHEAR 0.3T
7 1.21 0.0 1.3 o.o o.o o:o 0.0 -0.01 . 0.55 -0.34 -0.90 0.13 C<.15 0.04
8 -0.1 5.7 0.3 0.0 -0.1 0.0 -0.09 2.36 -3.17 ·-5.62 1.25 C<.15 0.26
9 -0.1 6.7 0.3 0.0 0.0 0.0 -0.07 2.75 -2.92 -5.75 1. 06 C<.15 0.27
10 -0.3 5.1 0.4 0.1 -0.1 0.0 -0.17 2~10 -4.11 -6.37 1.47 C<.l5 0.22
11 -0.1 8.1 2.9 0.4 o.o 0.0 -0.04 3.32 -27.52 -30.88 7.41. C<.l5 1.07
12 -0.2 6.1 0.4 0.1 -0.1 0.0 -0.15 2.49 :-3.86 -6.50 1.28 C<.15 0.23
13 0.0 9.1 2.9 0.4 . 0.0 . 0 .• 0 -0.02 3.71 -27:27 -31.01 7.28 C<.lS 1. 08
2C-4 CHB 7 o.oo o.o 1.3 o.o o.o o.o 0.0 -0.01_ 0.55 -0.34 -0.90 0.13 C<.15 0.04
8 -0.1 5.7 0.3 0 .. 0 -0.1 ·o.o -0.09 2.36 -3.17 -5.62 1.25 C<.l5 0.26
9 -0.1 6.7 0.3. 0.0 o.o 0.0 -0.07 2.75 -2.92 -5.75 1.06 C<.lS 0.27
10 -0.3 5.1 0.4 0.1 -0.1 o.o -0.17 2.10 -4.11 -6.37 1.47 C<.15 0.22
11 -0.1. 8.1 2.9 0.4 0.0 o.o -0.04 3.32 -27.52 -30.88 7.41 C<.l5 1. 07
12 -0.2 6.1 0.4 0.1 -0.1 0.0 -0.15 2.49 -3.86 -6.50 1.28 C<.lS 0.23
13 0.0 9.1 2.9 0.4 .0.0 o.o -0.02 3.71 -27.27 -31.01. 7.28 C<.15 1.08
7 0.29 0.0 1.3 0.1 o_.o 0.0 o~-o -0.01 o.ss .:..0.49 -1.05 0.13 C<.lS 0.05
8 -0.1 5.5 0.5 0.0 -0.1 0.0 -0.09 2.25 -4.61 -6.95 1.26 C<.15 0.32
9 -0.1 6.5 0.4 0.0 0.0 o.o ~0.07 2.69 -4.24 -6.99 1.07 C<.lS 0.32
10 -0.3 4.8 0.6 0.1 -0.1. 0.0 -0.1.7 1..97 -5.94 -8.09 1.47 C<.15 0.28
11 -0.1 8.1 4.4 o.-4 0.0 0.0 -0.04 3.31 -41.55 -44.89 7.50 C<.15 1.56
12 -0.2 5.9 0.6 0.1 -0.1 0.0 -0.15 2.41. -5.57 -8.12 1.28 C<.lS 0.28
13 0.0 9.1 4.4 0.4 o.o 0.0 -0.02. 3.74 -41.17 -44.93 7.36 C<.lS 1.56
7 0.59 0.0 1.3 0.1 0.0 0.0 o.o -0.01 0.55 -0.64 -1.20 0.13 C<.15 0.06
8 -0.1 5.2 0.6 0.0 -0.1 0.0 -0.09 2.14 -6.05 -8.28 1.26 C<.15 0.38
9 -0.1 6.4 0.6 o-.o 0.0 0.0 -0.07 2.61 -5.55 -8.23 1.07 C<.15 0.38
10 -0.3 4.5 0.8 0.1 -0.1 0.0 -0.17 1.84 -7.78 -9.80 1.48 C<.lS 0.34
11 -0.1 8.o 5.9 0.4 0.0 . 0.0 -0.04 3.29 -55.75 -59.08 7.59 C<.lS 2.05
12 -0.2 5.6 0.~ 0.1 -0.1. o.o -0 .• 15 2.32 -7.28 -9.74 1.29 C<.15 0. 34
13 0.0 9.2 5.8 0.4 0.0 o.o. -0.02 3.76 -55.24 -59.03 7.45 C<:ls 2.05
~cs Release 5.2 Engineers and Consultarits ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 306
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS-COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ I!Y FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
1-9 CHB 7 0 .oo 0.1 1.0 0.0 0.0 -0.1 0.0 0.06 0.41 -0.18 -0.53 0.20 BEND 0.03
8 0.8 18.3 0.0 o.o .-1.1 o.o o.so 7.52 0.26 8.28 2.42 TN+BN 0.38
9 0.7 17.5 -0.3 o.o ~1.1 0.0 0.40 7.17 2.55 10.12 2.72 TN+BN 0.47
10 0.9 18.0 -0.2 0.0 -1.1 0.0. ·o.ss 7.41 1.58 9".54 2.62 TN+BN 0.33
11 0.6 20.8 -5.1 0.4 -1.1 0.0 0.35 8.53 48.32 57.20 8.56 TN+BN 1.99
12 0.7 17.2 -0.4 0.0 . -1.1 0.0. 0.46 7.05 3.87 11.38 2.92 TN+BN 0.40
13 0.4 19.9 -5.4 0.4 -1.1 0.0 0.26 8.17 50.61 59.04 8.87 TN+BN 2.05
7 0.67 0.1 0.3 0.0 0.0 -0.1 0.0 0.06 0.11 -0.10 0.17 0.20 SHEAR 0.01
8 0.8 9.7 0.0 o·.o -1..1 o.o 0.50 3.97 -0.13 4.47 2.41 TN+BN 0.21
9 0.7 8.9 -0.1 0.0 -1.1 0.0 0.40 3.65 0.72 4.77 2.71 TN+BN 0.22
10 0.9 9.4 0.0 0.0 -1.1 0.0 0.55 3.87· 0.16 4.59 2.61 TN+BN 0.16
11 0.6 11.7 ~2-.0 0.4 -1.1 0~0 0.35 4.79 18.43 23.58 8.37 TN+BN 0.82
12 0.7 8.7 -0.1 0.0 -1·1 0.0 0.46 3.55 1.01 5.02 2.91 TN+BN 0.17
13 0.4 10.9 -2.0 0.4 •1.1 o.o 0.26 4.47 19.28 24.01 8.67 TN+BN 0. 83
7 1.35 0.1 -0.4 o.o o.o -0.1 0.0 0.06 -0.18 -0.02 0.24 0.19 SHEAR 0.01
8 0.8 1.1 0.1 0.0 "1.1 o.o 0.50 0.44 -0.52 0.94 2.40 SHEAR 0.17
9 0.7 0.4 0.1 0.0 -1.1 0.0 0.40 0.15 -1.11 -0.86 2.70 SHEAR 0.19
10 0.9 0.8 0.1 o.o -1.1 o.o 0.55 0.35 -1.25 -1.05 2.61 SHEAR 0.14
11 0.6 2.6 1.1 0.4 -1.1 o.o 0.35 1.07 -10.54 -11.26 8.17 SHEAR 0.43
12 0.7 0.1 0.2 0.0 -1.1 o.o 0.46 0.06 -1.85 -1.45 2.91 SHEAR 0.15
13 0.4 1.9 1.2 .0.4 -1.1 0.0 o;26 0.78 -11.14 -11.66 8.48 SHEAR 0.44
1\.CS Release 5.2 Engineers and· Consultants !0=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 2G-FEB-2008 TIME 08:52:15 PST PAGE 309
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX
MEMBER GRP LOAD FROM FORCE. MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI · KSI KSI KSI CHECK
D-E CHB 7 0.00 0.1 -1.6 0.0 0.0 o.o o.o 0.06 -0.66 0.02 0.74 0.03 TN+BN 0.03
8 0.8 -13.9 0.0 0.0 -0.2 0.0 0.50 -5.70 0.13 6.34 0.45 TN+BN 0.29
9 0.7 -14.4 0.0 0.0 -0.2 0.0 0.41 -5.90 . 0.13 6.44 0.43 TN+BN 0.30
10 0.9 -14.0 0.0 o.o -0.2 0.0 0.55 -5.76 0.22 6.53 0.46 TN+BN 0.23
1I 0.0 -I3 .5 -2.2 0.4 -0.3 0.0 0.01 ~5.55 20.43 25.99 7.68 TN+BN 0.90
12 0.7 -14.5 o.o 0.0 -0.2 ·o.o 0.45 -5.95 0.22 6.62 0.4~ TN+BN 0.23
13 -0.1 -14.0 -2.2 0.4 -0.3 0.0 -0.09 -5.74 20.43 26.08 7.66 C<.15 0.91
7 0.49 0.1 -1.7 0.0 o.o o.o . o.o 0.06 -0.69 0.00 0.75 0.03 TN+BN 0.03
8 o.8 -15.1 0.0 0.0 -0.2 o.o o.so -6.1.8 -0.11 6.69 0.44 TN+BN 0.31
9 0.7 -15.5 o.o 0.0 -0.2 0.0 0.41 . -6.35 -o.u 6.76 0.42 TN+BN 0.31
10 0.9 -15.2 0.0 o.o -0.2 o.o 0.55 -6.23 -0.1.1 6.78 0.46 TN+BN 0.24
1I 0.0 -15.0 0.4 0.4 -0,3 o.o 0.01 -6.18 -4.18 -10.35 7.53 SHEAR 0.39
12 0.7 -15.6 0.0 o.o -0.2 o.o 0.45 -6.40 -0.11 6.86 0.44 TN+BN 0.24
I3 -0.1 -15·5 0.4 0.4 -0.2 o.o ~0.09 -6.35 -4.18 -10.62 7.52 SHEAR 0.39
7 0.98 0.1 -I. 7 0.0 o.o 0.0 0.0 0.06 cO.n -0.02 0.77 0.02 TN+BN 0.04
8 0.8 -16.2 0.0 o.o -0.2 0.0 0.50 -6.66 -0.35 7.16 0.43 TN+BN 0.33
9 0.7 -16.6 0.0 o.o -0.2 o.o 0.41 -6.80 -0.35 7.21 0.42 TN+BN 0.33
10 0.9 -16.3 o.o 0.0 -0.2 o.o 0.55 -6.69 -0.43 7.25 0.45 TN+BN 0.25
1I 0.0 -16.6 3.0 0.4 -0.3 0.0 0.01 -6.80 -28.31 -35.10 7.38 BEND 1.22
12 0.7 -16.7 0.0 0.0 -0.2 0.0 0.45 -6.84 -0.43 7.30 0.43 TN+BN 0.25
13 -0.1 -16.9 3.0 0.4 -0.2 o.o -0.09 -6.95 -28.31 -35.34 7.37 C<.15 1..23
E-F CHB 7 0.00 0.1 -1.7 o.o 0.0 0.0 o.o 0.06 -0.71 Oc04 0.61 0.03 TN+BN 0.04
8 o.8 -16.2 0.0 o.o 0.1 . 0.0 o.so -6.66 0.12 7.26 0.27 TN+BN 0.34
9 0.7 -16.6 0.0 o.o 0.1 0.0 0.40 -6.80 0.13 7.34 0.29 TN+BN 0.34
10 0.9 -16.3 o.o 0.0 0.1 0.0 0.55 -6.69 0.21 7.46 0.30 TN+BN 0.26
11 -0.2 -16.5 -1.3 0.4 o.o o.o -0.10 -6.76 1.2.41 19.07 7.04 C<.15 0.67
12 0.7 -16.7 a·.o o.o 0.1 _ o·.o 0.45 -6.84 0.22 7.52 0.32 TN+BN 0.26
13 -0.3 -16.6 -1.3 0.4 o.o 0.0 -0.19 -6.91 12.42 19.13 7. 06 C<.15 0.68
7 0.49 0.1 -1.7 o.o 0.0 0.0 0.0 0.06 -0.68 . o.oo 0.74 0.04 TN+BN 0.03
8 o.8 -15.7 o.o 0.0 0.1 o.o 0.50 -6.43 0.04 6.98 0.28 TN+BN 0.32
9 0.7 -16.0 o.o 0.0 0.1 o.o 0.40 -6.56 0.05 7.01 0.30 TN+BN 0.32
10 0.9 -15.7 o.o 0.0 0.1 0.0 0.55 -6.46 0.04 7.05 0.31 TN+BN 0.24
11 -0.2 -16.3 1.1 0.4 0.0 0."0 -0.10 -6.68 -10.80 -17.56 6.90 C<.15 0.61
12 0.7 -16.1 0.0 0.0 0.1 0.0 0.45 -~.59. 0.04 7.08 0.33 TN+BN 0.25
13 -0.3 -16.6 1.1 0.4 0.0 .o.o ~0.19 -6.81 -io.8o -17.80 6.92 C<.15 0.62
7 0.98 0.1 -1.6 0.0 o.o o.o .o.o 0.06 -0;64 -0.03 0.70 0.04 TN+BN 0.03
8 0.8 -15.1 0.0 o.o 0.1 o.o 0.50 -6.20 -0.03 6.70 0.26 TN+BN 0.31
9 0.7 -15.4 o.o 0.0 0.1. o.o 0.40 -6."30 -0.03 6.71 0.30 TN+BN 0.31
10 0.9 -15.2 0.0 o.o 0.1 o.o o,ss -6.23 -0.14 6.77 0.31 TN+BN 0.24
11 -0.2 -16.1 3.5 0.4. o.o 0.0 -0.10 -6.60 -33.53 -40.23 6.76 C<.15 1.40
12 0.7 -15.4 0.0 0.0 0.1 0.0 0.45 -6.33 -0.14 6.78 0.33 TN+BN 0.24
13 -0.3 -16.3 3.5 0.4 0.0 o.o -0.19 -6.71 -33.53 -40.43 6.78 C<.15 1.40
~cs Release 5.2 Engineers·and Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PS"r PAGE 310
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
F-G CHB 7 0.00 0.1 -1.6 o.o 0.0 0.0 0.0 0.06 -0.64 0.06 . 0. 76 0.09 TN+BN 0.04
8 o.8 -15.1 -0.1 o.o 0.4 o.o 0.50 -6.20 0.70 7.41 0.98 TN+BN 0.34
9 0.6 -15.4 -0.1 o.o 0.4 0.0 0.40 -6.31 0.71 7.42 1.00 TN+BN 0.34
10 0.9 -15.2 -0.1 0.0 0.4 o.o 0.55 -6.23 0.81 7.58 1. 01 TN+BN 0.26
11 -0.4 -16.0 -3.4 0.4 0.3 o.o -0.25 -6.55 32.15 38.45 7.44 C<.l5 1.35
12 0.7 .,.J.5.4 -0.1 0.0 0.4 o.o 0.45 -6.33 0.81 7.59 1.03 TN+BN 0.26
13 -0.6 -16.2 -3.4 0.4 0.3 o.o -0.35 -6.65 32.16 38.46 7.46 C<.15 1.36
7 0.49 0.1 -1.3 o.o . o.o 0.0 o.o 0.06. -0.54 o.oo 0.60 0.10 TN+BN 0.03
8 0.8 -12.8 o.o 0.0 0.4 ·o.o 0.50 -5.27 0.08 5.85 0.98 TN+BN 0.27
9 0.6 -13.0 0.0 0.0 0.4 0.0 0.40 -5.35 0.07 5.82 1.00 TN+BN 0.27
10 0.9 -12.9 o.o 0.0 0.4 o.o 0.55 -5.28 0.09 5.92 1.01 TN+BN 0.21
11 -0.4 -14.0 -0.9 0.4 0.3 0.0 -0.25 -5.76 8.84 14.35 7.30 C<.15 0.52
12 o. 7. -13.1 o.o 0.0 0.4 0.0 0.45 -5.36 0.08 5.89 1.04 TN+BN 0.20
13 -0.6 -14.2 -0.9 0.4 .0.3 0.0 -0.35 -5.84 8.83 1.4.32 7.32 C<.15 0.52
7 0.98 0.1 -1..1 o.o 0.0 o.o 0.0 0.06 -0.43 co.o6 0.50 0.10 TN+BN 0.02
8 0.8 -10.5 0.1 o.o 0.4 o.o 0.50--4.32 -0.54 4.82 0.99 BEND 0.22
9 0.6 -10.7 0.1 0.0 0.4 o.o 0.40 -4.38 -0.57 4.78 1.01 BEND 0.23
10 0.9 -10.6 0.1 0.0 0.4 0.0 0.55 -4.33 -0.62 4.88 1. 02 BEND 0.17
11 -0.4 -12.1 1.5 0.4 0.3 o.o -0.25 -4~97 -13.98 -19.19 T.16 C<.15 0.67
12 0.7 -10.7 0.1 0.0 0.4 0.0 0.45 -4.39 -0.66 4.84 1.04 BEND 0.18
13 -0.6 -12.2 1.5 . 0.4 0.3 o.o -0.35 .;,.5.·02 -14.02 -19.39 7.18 C<.15 0.67
G-H CHB 7 0.00 0.1 -1.1 o.o o.o 0.1 0.0 0.06 -0.43 0.04 0.54 0.14 TN+BN 0.02
8 0.8 -10.5 o.o o,o o;7 o.o 0.50 -4.33 0.19 5.02 1.37 TN+BN 0.23
9 0.6 -10.7 o.o 0.0 0.7 0.0 0.40 -4.38 0.18 4.96 1.-36 TN+BN 0.23
10 0.9 -10.6 o.o 0.0 0.7 o.o 0.54 -4.33 0.27 5.15 1.40 TN+BN 0.18
11 -0.6 -12.0 -2.6'. 0.4 0.6 0.0 .;.0.35 -4.93 24.82 29.40 7.85 C<.15 1. OS
12 0.7 -10.7 o.o 0.0 0.7 0.0 0.45 -4.39 0.25 5.09 1.38 TN+BN 0.18
13 -0.7 -12.2 -2.6 0.4 o,6 o,o -0.45 -4.99 24.80 29.34 7 .83, C<.lS 1.05
7 0.49 0.1 -0.7 0.0 0.0 0.1. o.o 0.06 -0.27 -0.01 0.33 0.14 TN+BN 0.02
8 0.8 -6.5 0.0 0.0 Oo7 0.0 0.50 -2.69 -0.16 3.18 1.37 TN+BN 0.15
9 0.6 -6.6 0.0 o.o 0.7 0.0 0.40 -2.72 -0.06 3.12 1.36 TN+BN 0.14
10 0.9 -6.5 0.0 o.o 0.7 o.o 0.54 -2.69 -0.16 3.23 1.40 TN+BN 0.11
11 -0.6 -8.4 -0.2 0.4 0.6 0.0 -0.35 -3.44 1.46 4.54 7.71 SHEAR 0.40
12 0.7 -6.6 0.0 0.0 0.7 o.o 0.45 -2.72 -0.06 3.17 1.39 TN+BN 0.11
13 -0.7 -8.5 -0.2 0.4 0.6 0.0 -0.45 -3.47 1.55 4.57 7.70 SHEAR 0.40
7 0.98 0.1 -0.3 0.0 0.0 0.1 o.o 0.06 -0.10 C0.07 0.17 0.15 SHEAR 0.01
8 0.8 -2.5 0.1 0.0 . 0.7 o·.o. 0.50 -1.04 -0.51 1.54 1.38 SHEAR 0.10
9 0.6 -2.6 o.o o.o 0.7 0.0 0.40 -1.05 -0.30 1.45 1.37 SHEAR o. 09
10 0.9 -2.5 0.1 0.0 0.7 .o.o · o.s4· -1.03 -0.58 1.57 1.41. SHEAR 0.07
11 -0.6 -4.7 2.3 0".4 0.6 o.o -0.35 -1.93 -21.42 -23.71 7.58 C<.lS 0. 82
12 0.7 -2.5 o.o o.o 0.7 o.o 0.45 -1.04 -0.37 1.49 1.39 SHEAR 0.07
13 -0.7 -4.7 2.2 0.4 0.6 0.0 -0.45 -1.94 -21.21 -23.61 7.56 C<.15 0.82
)ACS Release 5 . 2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 311
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE ~OMENT MOMENT SHEAR SHEAR TORSION AXIAL BmiDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-K.I:P KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
H-I CHB 7 o.oo 0.1 -0.3 '0.0 0.0 0.1 0.0 0.06 -0.10 0.03 0.20 0.18 SHEAR 0.01 6 0.6 -2.5 o.o 0.0 1.0 0.0 0.49 -1.04 0.34 1.87 1.84 SHEAR 0.13 9 0.6 -2.6 -0.1 0.0 1.0 0.0 0.40 -1.05 0.56 2.01 2.01 SHEAR 0.14 10 0.9 -2.5 o.o 0.0 LO o.o 0.54 -1.03 0.42 1.99 1. 85 SHEAR 0.10 11 -0.7 -4.6 -2.1 0.4 0.9 o.o -0.46 -1.90 19.38 20.82 7.34 C<.l5 0.76 12 0.7 -2.5 -0.1 0.0 1.0 0.0 0.44 -L04 0.65 2.13 2.04 SHEAR 0.11
13 -0.9 -4.6 -2.1 0.4 0.9 o.o -0.56 -1.91 19.61 20.96 7.51 C<.15 0.77
7 0.49 0.1 0.3 0.0 0.0 0.1 o.o 0.06 o.-1.2 o.oa 0.26 0.19 SHEAR 0.01
6 0.8 3.2 0.0 o.o 1.0 0.0 0.49 1..30 0.37 2.17 1.84 SHEAR 0.13
9 0.6 3.2 o.o 0.0 1.0 0.0 0.40 1.32 -0.02 1. 71 2.01 SHEAR 0.14
10 0.9 3.2 0.0 0.0 1.0 0.0 0.54 1..32 0.35 2.21 1.86 SHEAR 0.10
11 -0.7 0.7 0.0 0.3 0.9 0.0 -0.46 0.30 -0.17 -0.93 7.20 SHEAR 0.38
12 0.7 3.2 0.0 o.o 1.0 o.o 0.44 1.33 -0.05 1. 78 2.05 SHEAR 0.11
13 -0.9 0.8 0.1 0.4 0.9 o.o -0.56 0.31 -0.56 -1.43 7.38 SHEAR 0.38
7 0.98 0.1 0.9 0.0 0.0 0.1 0.0 0.06 0.35 0.12 0.54 0.20 TN+BN 0.02
6 0.6 8.9 0.0 0.0 1.0 o.o .0.49 3.66 0.41 4.56 1.65 TN+BN 0.21
9 0.6 9.0 0.1 0.0 1.0 o.o 0.40 3.69 -0.61 4.09 2.02 BEND 0.20
10 0.9 9.0 0.0 0.0 1.0 0.0 0.54 3.68 0.27 4.49 1.66 TN+BN 0.16
11 -0.7 6.1 2.0 0.3 0.9 0.0 -0.46 2.50 -19.23 -22.19 7. 07 C<.15 0.77
12 0.7 9.1 0.1 0.0 1.0 0.0 0.44 3.72 -0.74 4.16 2.05 BEND 0.15
13 -0.9 6.2 2.1 0.3 0.9 0.0 -0.56 2.54 -20.25 -23.34 7.25 C<.15 0.61
I-J CHB 7 0.00 0.1 0.9 0.0 o.o· 0.1 o;o 0.06 0.35 0.22 0.63 0.37 TN+BN 0.03
8 0.8 8.9 -0.1 0.0 1.3 o.o 0.49 3.65 0.96 5.10 3.01 TN+BN 0.24
9 0.6 9.0 -0.1 0.1 1.3 0.0 0.39 3.69 0.75 4~83 3.93 SHEAR 0.27
10 0.9 9.0 -0.1 0.0 1.3 0.0 0.54 3.68 0.96 5.17 2. 98 TN+BN 0.18
11 -0.9 6.2 -1.9 0.5 1.2 -0.1 -0.56 2.54 18.33 20.31 11.90 C<.lS 0.75
12 0.7 9.1 -0.1 0.1 1.3 0.0 0.44 3.72 0.75 4.90 3.91 SHEAR 0.20
13 -1.1 6.3 -1.9 0.5 1.2 6.0 "0.66 2.57 18.11 20.03 11.62 C<.l5 0. 74
7 o-.49 0.1 1.5 0.0 0.0 0.1 o.o 0.06 0.63 -0.17 -0.74 0.37 BEND 0.04
8 0.8 16.3 0.0 0.0 . 1.3 o.o 0.49 6.71 0.16 7.36 3.01 TN+BN 0.34
9 0.6 16.5 0.3 0.1 1.3 0.0 0.39 _6.76 -2.64 -9.01 3.94 BEND 0.44
10 0.9 16.4 0.0 o.o 1.3 0.0 0.54 6.74 0.26 7.54 2.99 TN+BN 0.26
11 -0.9 13.3 0.9 0.5 1.2 -0.1 -0.56 5.46 -8.82 -14.84 11.77 SHEAR 0.61
12 0.7 16.6 0.3 0.1 1.3 0.0 0.44 6.79 .-2.54 -8.90 3.92 BEND 0.32
13 -1.1 13,4 1.2 0.5 1.2 0.0 -0.66 5.51 -11.62 -17.79 11.49 C<.15 0.62
7 0.98 0.1 2.3 0.1 0.0 0.1 0.0 0.06 0.93 -0.56 -1.42 0.38 BEND 0.07
8 0.8 23.8 0.1 0.0 1.3 . o.o 0.49 9.77 -0.63 10.26 3. 02 BEND 0.48
9 0.6 24.0 0.6 0.1 1.3 o.o 0.39 9.84 -6.02 -15.47 3.94 BEND 0.73
10 0.9 23.9 0.0 o.o 1.3 0.0 o,54 9.61 -0.44 10.35 3.00 TN+BN 0.36
11 -0.9 20.5 3.8 0.5 1.2 -0.1 -0.56 8.39 -35.48 -44.43 11.63 C<.15 1.55
12 0.7 24.1 0.6 0.1 1.3 0.0 0.44 9.86 -5.83 -15.27 3.93 BEND 0.55
13 -1.1 20.6 4.3 0.5 1.2 0.0 -0.66 8.46 -40.87 -49.99 11.35 C<.l5 1. 74
lACS Release 5 . 2 Engineers and Consultants ID-=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008. TIME 08:52:15 PST PAGE 315
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP I<SI I<SI I<SI I<SI I<SI CHECK
P-QCHB 7 o.oo 0.2 -0.4 0.0 0.0 0~1 o.o o.u -0.16" 0.03 0.30 0.11 -TN+BN 0.01 8 0.8 -3.6 o.o 0.0 0.7 0.0 0.50 -1.49 0.23 2.21 1.33 TN+BN 0.10 9 0.9 -3.6 -0.1 o;o 0.7 o.o 0.58 -1.46 0.94 2.98 1.93 TN+BN 0.14 10 0.8 -3.6 0.0 o.o 0.7 0.0 0.52 -1.48 0.29 2.29 1.31 TN+BN 0.08 11 1.3 -4.0 -0.6 0.1 0.6 o.o 0.82 -1.63 5.25 7.70 2.71 TN+BN 0.27 12 1.0 -3.5 -0.-1 .o.o 0.7 0.0 0.60 -1.46 -1.00 3.06 1. 95 TN+BN 0.11 13 1.5 -3.9 -0.6 0.1 0.6 . o .. o 0.90 -1..61. 5.96 8.47 3.40 TN+BN 0.29 7 0.49 0.2 -0.1 0.0 0.0 0.1 o.o· 0.11 .:.o.o4 O.OG 0.20 0.11 TN+BN 0.01 8 0.8 0.3 -0.1 o.o 0.7 o.o o.so. 0.11 0.53 1.14 1.34 SHEAR 0.09 9 0.9 0.3 0.2 0 .. 0 0.7 . o.o o.5a 0.13 -L43 -0.98 1.94 SHEAR 0.13
10 0.8 0.3 -0.1 0.0 0.7 0.0 0.52 0.12 0.51 1.15 1.32 SHEAR 0.07
11 1.3 -0.4 0.0 0.1 0.6 o.o 0.82 -0.16 0.09 1. 06 2.57 SHEAR 0.13
12 1.0 0.3 0 .. 2 0.0 0.7 o_.-0 0.60 0.13 -1.45 -0.98 1.96 SHEAR 0.10
13 1.5 -0.3 0.2 0.1 0.6 0.0 0.90 -0.14 -1.87 -1.11 3.27 SHEAR 0.17
7 0.98 0.2 0.2 0.0 0.0 o:1 o.o 0.11 0.10 0.08 0.29 0.12 'I'N+BN 0.01
8 o.8 4.2 -0.1 o.o 0.7 o,o 0.50 1.72 0.83 3.04 1.34 TN+BN 0 .. 14
9 0.9 4.2 0.4 0.0 0.7 o.o 0.58 1.-72 -3.80 -4.94 1.94 BEND 0.26
10 0.8 4.2 -0.1 0.0 0.7 0.0 0.52 1.73 0.74 2.98 1.32 TN+BN 0.10
11 1.3 3.2 0.5 0.1 0.6 0.0 0.82 1.33 "4.58 -5.09 2.44 BEND 0.21
12 1.0 4.2 0.4 o.o 0.7 0.0 0.60 1. 73 -3.90 -5.02 1.96 BEND 0.20
13 1.5 3.2 1.0 0.1 0.6 o.o 0.90 1:.33 . C....9.21 -9.64 3.14 BEND 0.37
Q-R CHB 7 0.00 0.2 0.2 0.0 0.0 0.1 0.0 0.11 0.10 0.15 0.36 0.24 TN+BN 0.02
8 0.8 4.2 -0.1 o.o 1.0 0.0 0.49 1..71 1.22 3.43 2.67 SHEAR 0.19
9 0.9 4.2 0.3 o .. o 0.9. 0.1 0.58 1.72 -2.44 -3.59 4.00 SHEAR 0.28
10 0.8 4.2 -0.1 0.0 1.0 o.o 0.52 1.72 1.23 3.47 2.66 SHEAR 0.14
11 1.3 3.2 -0.7 0.3 0.9 co.1 0.79 1.33 6.14 8.26 8.60 SHEAR 0.45
12 1.0 4.2 0.3 0.0 0.9 0.1 0.60 1.73 -2.43 -3.57 4.01 SHEAR 0.21
13 1.4 3.3 -0.3 0.2 0.9 0.0 0.87 1.34 2.48 4.70 5.45 SHEAR 0.28
7 0.49 0.2 0.7 0.0 o.o 0.1 0.0 o.u 0.29 -0.07 0.40 0.24 TN+BN 0.02
8 0.8 9-.8 0.1 o.o 1.0 -0.0 0.49 4.02 -0.62 4.52 2.68 BEND 0.21
9 0.9 9.8 o.o o.o 0.9 0.1 0.58 4.00 0.20 4.79 4.00 SHEAR 0.28
10 0.8 9.8 0.1 0.0 1.0 o.o 0.52 4.03 -0.56 4.55 2.67 BEND 0.16
11 1.3 8.6 1.1 0.3 0.9 -0.1 0.79 3.54 -10.39 -13.13 8.47 BEND 0.48
12 1.0 9.8 0.0 0.0 0.9 0.1 0.60 4.01 0.26 4.88 4.02 SHEAR 0.21
13 1.4 8.6 1.0 0.2 0.9 0.0 0.87 3.52 -9.56 -12.21 5.32 BEND 0.45
7 0.98 0.2 1.2 0.0 o.o 0.1 0.0 0.11 ·o.49 -0.29 -0.67 0.25 BEND 0.04
B 0.8 15.4 0.3 0.0 1.0 0.0 0.49 6.34 ·-2.46 -8.30 2.68 BEND 0.41
9 0.9 15.3 -0.3 0.0· 0.9 0.1 0.58 6.29 2.85 9.72 4.01 TN+BN 0.45
10 0. 8. 15.5 0.2 o.o 1.0 0.0 0.52 6.35 -2.35 -8.19 2.67 BEND 0.30
11 1.3 14.0 2.8 0.3 0.9 .-0.1 0.79 5.75 -26.43 -31.39 8.34 BEND 1.12
12 1.0 15.4 -0.3 0.0 0.9 0.1 0.60 6.30 2.96 9.86 4.02 TN+BN 0.34
13 1.4 13.9 2.2 0.2 0.9 o.o 0.87 5.70 -21..12 .-25.95 5.18 BEND 0.93
SACS Release 5.2 Engineers and ~orisultants ID-=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 . TIME 08:52:15 PST PAGE 316
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MlliiBER GRP LOAD FROM -FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX S'i'!!Ess y z. STRESS STRE~S COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS .IN-KIP KSI KSI KSI KSI KSI CHECK
R-s CHB 7 o.oo 0.2 1.2 0.0 o.o -0.1 0.0 0.13 .0.51 0.06 0.70 0.20 TN+BN 0.03 6 1.0 15.9 0.0 0.0 "1.0 0.0 0.61 6.52 -0.45 7.13 2.29 TN+BN 0.33 9 1.3 16.1 :.1.1 0.1 -1.0 -0.1 0.82 6.62 10.33 17.77 5.36 TN+BN 0.82 10 1.0 15.8 0.1 o.o -1.0 0.0 0.61 6.50 .-0.56 7.11 2.30 TN+BN 0.25 11 1.6 15.0 2.5 -0.2 -0.9 0.1 1.01 6.16 -23.69 -26.84 7.71 BEND 1.04 12 1.3 16.1 -1.1 0.1 -1.0 -0.1. 0.82 6.60 10.23 17.65 5~34 TN+BN 0.61 13 2.0 15.3 1.4 -0.1 -0.9 . o.o 1.21 6.26 -12.91 -17.96 3.64 BEND 0.67 7 0.49 0.2 0.8 0.0 o.o -0.1 0.0 0.13 0.31 0.02 0.47 0.19 TN+BN O.Q2 6 1.0 10.2 0.0 o.o . -1.0 o;o 0.61 4.20 -0.04 4.81 2.29 TN+BN 0.22 9 1.3 10.5 -0.3 0.1 -1.0 -0.1 o:82 4.31. 2.93 8.05 5.35 TN+BN 0:37 10 1.0 10.2 0.0 o.o -1..0 0.0 0.61 .4.18 -0.10 4. 80 2.30 TN+BN 0.17 11 1.6 9.5 1.1 -0.2 -0.9 0.1 1.01 3.90 -10.01 -12.90 7.84 BEND 0.48 12 1.3 10.5 -0.3 0.1 -1.0 -0.1 0.82 4.29 2.87 7.97 5.34 SHEAR 0.28 13 2.0 9.8 0.7 -0.1 -0.9 0.0 1.21 4.01. -7.05 -9.84 3.77 BEND 0.38 7 0.98 0.2 0.3 o.o 0.0 -0.1 0.0 . 0.13 0.13 -0.02 0.26 0.18 SHEAR 0. 01 8 1.0 4.6 0 .. 0 0.0 -1.0 0.0 0.61 1.89 0.38 2.88 2.28 SHEAR 0.16 9 1.3 4.9 0.5 0.1 -1.0 -0.1 ·0.82 2.00 -4.48 -5.66 5.35 SHEAR 0.37 10 1.0 4.6 o.o 0.0 -1.0 0.0 0.61 1.87 0.36 2.85 2.29 SHEAR 0.12 11 1.6 4.0 -0.4 . -0.3 -0.9 0.1 1.01 1.64 4.16 6.81 7.97 SHEAR 0.42 12 1.3 4.8 0.5 0.1 -0.9 -0.1 0.82 1.99 -4.49 -5.66 5.33 SHEAR 0.28 13 2.0 4.3 0.1 -0.1 -0.9 0.0 1.21 1.76 -0.70 2.97 3.90 SHEAR 0.20
3ACS Release 5.2 Engineers and Consultants !0=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08~52;15 PST PAGE 320
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
z-10 CHB 7 0.00 0.2 2.9 0.0 o.o -0 .• 2 0.0 0.13 1.21 -0.24 1.34 0.40 BEND 0.07 8 1.2 25.4 0.1 o.o -1.4 0.0 0 •. 75 10.41. -0.58 11.16 3.23 TN+BN 0.52 9 1.0 23.8 -0.3 o.o -1.3 -0.1. 0.62 9.78. 2.70 13.11 4.42 TN+BN 0.61 10 1.2 25.4 0.1 0.0 -1.4 o.o 0.73 10.41 -0.67 11.14 3.24 TN+BN 0.39 11 1.0 24.7 4.8 -0.6 -1.4 0.1 0.59 . 10.14 -45.28 -54.82 13.60 BEND 1.92 12 1.0 23.8 -0.3 o.o -1.3 -0.1 0.60 9.78 2.61 12.99 4.41 TN+BN 0.45 13 0.7 23.2 4.4 -0.5 -1.4 0.0 0.46 9.51 _;42.00 -51.04 10.90 BEND 1. 79 7 0.49 0.2 2.0 o.o 0.0 ._ -0.2 o.o . 0.13 . 0.82 -0.08 0.95 0.39 TN+BN 0. 04 8 1.2 17.2 0.0 0.0 . -1.4 0.0 0.75 7.04 0.00 7.79 3.23 TN+BN 0.36 9 1.0 16.1 0.0 0.0 -1.3 .-0.1 0.62 6.59 0.15 7.37 4.41 TN+BN 0.34 10 1.2 17.1 o.o 0.0 -1.4 0.0 0.73 7.03 -0.06 7.77 3.24 TN+BN 0.27 11 1.0 16.3 1.5 -0.6 -1.4 0.1 0.59 6.68 -14.36 --20.44 13.73 BEND 0.73 12 1.0 16.0 o.o 0.0 •1.3 -0.1 0.60 6.58 0.09 7.28 4.40 TN+BN 0.25 13 0.7 15.2 1.5 -0.5 -1.4 0~0 0.46 6.22 -14.21 -19.96 11.04 BEND 0.71 7 0.98 0.2-1.1 o.o 0.0 . -0.2 o.o 0.13 0.44 ·0. 08 0.65 0.38 TN+BN 0.03 8 1.2 9.0 -0.1 0.0 -L4 o.o 0.75 3.68 0.58 5.01 3.22 TN+BN 0.23 9 1.0 8.3 0.3 0.0 -1.3 -0.1 0.62 3.40 -2.40 -5.17 4.41 SHEAR 0. 31 10 1.2 8.9 -0.1 o.o -1.4 o.o 0.73 3.67 0.56 4.96 3.23 TN+BN 0.17 11 1.0 7.9 :..1.8 -0.6 -1.4 0.1 0.59 3.22 17."05 20.86 13.87 TN+BN 0.72 12 1.0 8.3 0.3 o,o -1.3 -0.1 0.60 3.39 .-2.42 -5.21 4.40 SHEAR 0.23 13 0.7 7.2 -1.5 -0.5 -1.4 o.o 0.46 2.94. 14.07 17.48 11.17 TN+BN 0.61
10-11 CHB 7 0.00 0.2 1.1 0.0 0.0 -0.1 0.0 ' 0.13 0044 0.09 0.66 0.27 TN+BN 0.03 8 1.2 9.0 -0.1 0.0 -1.1 0.0 0;75 3.68 0.79 5.22 2.17 TN+BN 0.24 9 1.0 8.3 0.3 0.0 -1.0. o.o 0.63 3.40 -3.19 -5.96 2.53 BEND 0.30 10 1.2 9.0 -0.1 o.o -1.1 0.0 0;73 3.67 0.89 5.29 2 .. 19 TN+BN 0.18 11 1.1 7.8 2.0 -0.3 -1.1 o.o 0.68 3.19 -19.25 -21.76 7.47 BEND 0.78 12 1.0 8.3 0.3 o.o -1.0 0.0 0.61 3.39 -3.09 -5.87 2.51 BEND 0.23 13 0.9 7.1 2.5 •0.4 -1.1 o.o 0.56 2.91 C23.23 -25.58 7.97 BEND 0.91 7 0.49 0.2 0.3 0.0 0.0 -0.1 0.0 0.13 0.11 0.04 0.28 0.27 SHEAR 0.02
8 1.2 2.5 0.0 0.0 -1.1 o.o . 0.75 1.02 0.46 2.23 2.16 SHEAR 0.15
9 1.0 2.2 0.1 o.o -1.0 0.0 0.63 0.89 -1.20 1.52 2.53 SHEAR 0.18 10 1.2 2.5 -0.1 0.0 -1.1 0.0 ·0. 73 1.01 0.47 2.22 2.19 SHEAR 0.11 n 1.1 1.1 0.0 -0.3 -1.1. 0.0 0.68 0.47 -0.18 1.15 7.61 SHEAR 0.40 12 1.0 2.2 0.1 o.o -1.0 0.0 0.61 0.89 -1.19 1.49 2.50 SHEAR 0.13 13 0.9 0.8 0.2 -0.4 -1.1 o.-o 0.56 0.34 -1. 8.4 -1.62 8_.10 SHEAR 0.42
7 0.98 0.2 -0.5 o.o o.o -0.1 o.o 0.13 ":'0.21 -0.01. 0.35 0.26 SHEAR 0.02
8 1.2 -4.0 o.o o.o --1.1 o.o 0.75 -1.64 0.14 2.52 2.16 SHEAR 0.15 9 1.0 -3.9 -0.1 0.0 -1.0 Q.O 0.63 -1..60 o-.79 3.02 2.52 SHEAR 0.18
10 1.2 -4.0 o.o 0.0 . Cl.1 0.0 . 0.73 -1..64 0_.06 2.43 2.18 SHEAR 0.11 n 1.1 -5.5 -2.1 . -0.4 -1.1 0.0 0.68 C2.25 19.39 22.32 7.74 TN+BN 0.78 12 1.0 -3.9 -0.1 0.0 -1.0 . o.o 0.61 -1.61 0.72 2.93 2.50 SHEAR 0.13 13 0.9 -5.4 -2.1 -0.4 "1.1 .0.0 0.56 -2.22 20.04 22.82 8.23 TN+BN 0.79
>ACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26_:FEB·-200.8 TIME 08:52:15 PST PAGE 321
SACS-IV SYSTEM MEMBER DETAI.L . REPORT
DIST .\' MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT Sl!EAR SHEAR TORSION AXIAL BENDING ST'Rl3SS COMB. SHEAR CRIT. COMB. CASE END PX MY MZ FY FZ MX. STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS "KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
11-12 CHB 7 0.00 0.2 -0.5 o.o 0.0 ~o:1 0.0 0.13 -0.21 -0.03 0.35 0.22 TN+BN 0.02 8 1.2 -4.0 0.0 o.o -0.8 0.0 0.75 -1.64 -0.02 2.39 1.65 SHEAR 0.11 9 1.0 -3.9 -0.1 0.0 -0.7 0.0 0.63 -1.60 0.53 2.77 1.61 'I'N+BN 0.13 10 1.2 -4.0 0.0 0.0 -0.8 o.o 0.73 -1.64 "0.03 2.40 1.66 SHEAR 0.09 11 1.3 -5.6 2.3 -0.4 -0.8 0.0 0.79 -2.29 •21.39 -22.89 7.90 BEND 0.82 12 1.0 -3.9 -0.1 o.o -0.7 0.0 0.61 -1.61' . 0.59 2.81 1.62 TN+BN 0.10 13 1.1 -5.5 2.2 -0.4 -0.8. 0.0 0.6~ -2.26 -20.84 -22.42 7.69 BEND 0.80 7 0.49 0.2 -1.2 0.0 0.0 -0.1 ·a. a 0.13 -0.48 -0.01 0.61 0.21 TN+BN 0.03 8 1.2 -8.7 o.o 0.0 -0.8 0.0 0.75 -3.-59 -0.34 4.34 1.65 TN+BN 0.20 9 1.0 -8.3 0.0 o.o -0.7 o.o 0.63 -3.40 -0.11 4.03 l. 61 TN+BN 0.19 10 1.2 -8.8 0.0 0.0 -0.8 o.o . 0.73 -3.60 -0.31 4.33 1.65 TN+BN 0.15 11 1.3 -10.5 -0.1 -0.4 -0.8 0.0 0.79 -4.31 1.16 6.25 8.04 SHEAR 0.42 12 1.0 -8.3 0.0 0.0 -0.7 0.0 0.61 -3.40 -0.07 4.01 1.61 TN+BN 0.14 13 1.1 -10.0 -0.1 -0.4 -0.8 0.0 0.67 -4.11 1.40 6.18 J.82 SHEAR 0.41 7 0.98 0.2 -1.8 0.0 ·o.o -0.1 o.o 0.13 -0.74 0.02 o.a9 0.21 TN+BN 0.04 8 1.2 -13.5 0.1 o.o -0.8 0.0 0.75 -5.54 -0.67 6.29 1.64 TN+BN 0.29 9 1.0 -12.6 0.1 o.o -o.i 0.0 0.63 -5.19 -0.75 5.81 1.60 BEND 0.27 10 1.2 -13.5 0.1 o.o -0.8 o.o 0.73 -5.54 -0.65 6.27 1.65 TN+BN 0.22 11 1.3 -15.4 -2.6 -0.4 -0.8 0.0 0.79 -6.32 24.20 31.30 8.17 TN+BN 1.09 12 1.0 -12.7 0.1 o.o . -o. 7 0.0 0.61 -5.19 -0.73 5.80 1. 61 BEND o:n 13 1.1 -14.5 -2.6 -0.4 -0.8 0.0 0.67 -5.97 24:.12 30.75 7.96 TN+BN 1.07
12..; 1T CHB 7 0.00 0.2 -1.8 0.0 o.o -0.1 o.o 0.13 -0.74 ·-a~ 04 0.87 0.20 TN+BN 0.04 8 1.2 -13.5 0.1 o.o. -0.5 o.o. 0.75 -5.54 -0.74 6.29 l. 08 TN+BN 0.29 9 1.0 -12.6 0.1 0.0 . -0.4 0.0 0.63 -5.19 -0.86 5.81 1.05 BEND 0.28 10 1.2 -13.5 0.1 o.o co.5 0.0 o. 73 -5.54. -0.58 6.27 1. 02 TN+BN 0.22 11 1.4 -15.5 1.4 -0.5 -o.5 0.0 0.89 -6.36 -13.38 -18.85 9.42 BEND 0.69 12 1.0 -12.6 0.1 o.o -0.4 o.o 0.61 -5.19 -0.70 5.80 0.99 BEND 0.20 13 1.2 -14.6 1.4 -0.5 -0.5 o.o 0.76 -6.00 -13.50 -18.74 9.40 BEND 0.68 7 0.60 0.2 -2.4 0.0 o.o -0.1 o.o .0.13 -0.99 -0.05 1.12 0.19 TN+BN 0.05 8 1.2 -17.0 0.0 o.o -0 .• 5 0.0 0.75 -6.97 -0.29 7.72 1.08 TN+BN 0.36 9 1.0 -15.7 0.0 o.o .-0·4 o.o 0.63 -6.43 .-0.21 7.06 1. 04 TN+BN 0.33 10 1.2 -17.0 0.0 o.o -0.5 o.o 0.73 -6.98 . . ..;0.40 7.71 1.01 'I'N+BN 0.27 11 1.4 -19.2 -2.4 -0.5 -o.s 0.0 0.89 -7.89 22.74 31.52 9.58 TN+BN 1.09 12 1.0 -15.7 0.0 o.o -0.4 0.0 0.61 -6.43 -0.32 7.04 0.98 TN+BN 0.24 13 1.2 -17.9 -2.4 -0.5 -o.5 0.0 0.76 -7.34 22.83 30.93 9.56 TN+BN 1. 07 7 1.19 0.2 -3.0 0.0 o.o -0.1 0.0 0.13 -1.22 .-0.06 1.36 0.19 TN+BN 0.06 8 1.2 -20.5 0.0 o.o -0.5 0.0 0.75 -8.40 0.17 9.31 1.07 TN+BN 0.43 9 1.0 -18.7 o.o o.o -0.4 . 0.0 0.63 -7.66 0.45 a. 74 1.04 TN+BN 0.40 10 1.2 -20.5 0.0 o.o -o.s o.o 0.73 -8.40 -0.23 9.13 1.00 TN+BN 0.32 _bL 1.4 -22.9 -6.3 -0.6 -0.5 0.0 0.89 -9;41. 59.58 69.87 9.75 TN+BN 2.43 12 1.0 -18.7 0.0 o.o -0.4 0.0 0.61 ~ --o:'06 8.33 0.97 TN+BN 0.29
13 1.2 -21.1 -6.3 -0.6 -0.5 o.o 0.76 c8.67 59.86 69.30 9.73 TN+BN 2.41
SACS Release 5.2 Engineers and ConSultant'S ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 337
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST MAX MEMBER GRP LOl\D FROM FORCE MOMENT MOMENT SHEAR· SHEAR TORSION AXIAL . BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI I<SI KSI KSI CHECK
1X-lY CHB 7 o.oo 0.2 -0.5 o.o 0.0 0.1 0.0 0.14 -0.21 0.30 0.65 0.38 TN+BN 0_. 03
8 1.3 -4.1 -0.2 0.0 0.8. 0.0 .0.79 -1.68 1.96 4.44 2.58 TN+BN 0.21 9 1.1 -3.7 -0.2 0.1 0,7 0.0 o,66 -1.52 2.05 4.24 2.78 TN+BN 0.20 10 1.2 -4.1 -0.2 o-.1 0.8 o.o 0.76 -1.69. 2.24 4.70 2.66 TN+BN 0.16
ll 2.2 -3.2 1.4 -0.2 1.0 0.0 1.36 -1.30 -12.88 -12.81 5.96 BEND 0.49 12 1.0 -3.7 -0.2 0.1 0.7 0.0 0.63 -1.53 2.34 4.50 2.86 TN+BN 0.16 13 2.0 -2.8 1.4 -0.2 0.9 0.0 1.23 .:.1.14 ._.12.79 -12.69 5.41 BEND 0.48
7 0.55 0.2 0.2 o.o o.o 0.1 o.o 0.14 0.10 -0.17 0.24 0.39 SHEAR 0.03
8 1.3 1.2 0.1 o.o· 0.8 ·o.o 0.79 0".48 .::.o.96 1.27 2.59 SHEAR 0.18
9 1.1 1.2-0.2 0.1 0.7 o.o 0.66 0.50 -2.36 -2.19 2.78 SHEAR 0.19
10 1.2 1.1 0.1 0.1 0.8 o.o 0.76 0.47 -1.01 1.23 2.67 SHEAR 0.14
ll 2.2 3.1 -0.2 -0.2 1.0 o.o 1.36 1.28 2.18 4.83 6.12 SHEAR 0.32
12 1.0 1.2 0.3 0.1 0.7 0.0 0.63 0.48 -2.40 -2.25 2.86 SHEAR 0.15
13 2.0 3.2 -0.1 -0.2 0.9 o.o 1.23 1.30 0.79 3.33 5.57' SHEAR 0.29
7 1.10 o.~ 1.0 0.1 0.0 0.1 o.o ·0.14 0~42 -0.64 -0.92 0.39 BEND o.os
8 1.3 6.5 0.4 0.0 0.8 0.0 0.79 2.66 -3.89 -5.76 2.60 BEND 0.30
9 1.1 6.2 0.7 0.1. 0.8 0.0 0.66 2.53 . -6.77 -8.63 2.79 BEND 0.43
10 1.2 6.4 0.5 0.1 0.8 0.0 0.76 2.64 -4.26 -6.14 2.68 BEND 0.24
ll 2.2 9.4 .-1.9 -0.3 l.o 0.0 1.-36 3.87 17.86 23.10 6.28 TN+BN 0.80
12 l.O 6.1 0.8 0.1 0.7 0.0 0.63 2.51 -7.13 -9.01 2.87 BEND 0.33
13 2.0 9.1 -1.6 -0.2 0.9 0.0 1.23 3.74 14.99 19.96 5. 73 TN+BN 0.69
lY-lZ CHB 7 0.00 0.2 1.0 0.1 0.0 0.1 o.o 0.14 0.42 -0.98 -1.26 0.71 BEND 0.06
8 1.3 6.5 0.6 -0.2 1.1 o.o 0.80 2.65 -6.09 -7.95 4.55 BEND 0.40
9 1.1 6.1 1.1 co.3 1.0 o.o 0.67 2.52 -10.22 -12.07 6.53 BEND 0.59
10 1.2 6.4 0.6 -0.2 1.1 o.o 0.76 2.64 -5.86 -7.73 4.53 BEND 0.30
11 2.5 9.3 1.6 . -0.2 1.3 0.0 1".53 3.84 -15.48 -17.79 5.46 BEND 0.67
12 l.O 6.1 1.1 -0.3 0.9 0.0 0.64 .2.51 -9.99 -11.86 6.51 BEND 0.43
13 2.3 9.0 2.1 -0.3 1.2 o.o 1.41 3.70 -19.61 -21.91 7.34 BEND 0.81
7 0.55 0.-2 2.0 -0.1 o.o 0.2 0.0 0.14 0.82 0.63 1.59 0.71 TN+BN 0.07
B 1.3 13.4 -0.4 -0.2 l.l o.o 0.80 5.52 3.34 9.65 4.55 TN+SN 0.45
9 1.1 12.4 -0.9 -0.3 1.0 o.o 0.67 5.10 8.44 14.21 6.54 TN+BN 0.66
10 1.2 13.4 -0.4 -0.2 1-1 0.0 0.76 5.50 3.50 9.77 4.54 TN+BN 0.34
ll 2.5 18.0 0.6 -0.2 1.3 0.0 .1.53 7.39 -5.79 -11.64 5.62 BEND 0.46
12 1.0 12.4 -0.9 -0.3 1.0 o.o 0.'64 5.08 8.61 14.33 6.52 TN+BN 0.50
13 2.3 17.0 0.1 -0.3 1.2 o.o 1.41 6.97 -0.68 8.37 7.50 SHEAR 0.39
7 1.10 0.2 3.0 -0.2 0.0 0.2 0.0 0.14 1.24 2.24 3.61 0.72 TN+BN 0.17
a 1.3 20.4 -1.4 -0.2 1.1 o.o 0.80 . 8.39 1.2.76 21.95 4.56 TN+BN 1.02
9 1.1 18.7 -2.9 -0.3. 1.0 o.o o.-67 7.-69 ·27.10 35.46 6.54 TN+BN 1.64
10 1.2 20.4 -1.4 -0.2 1.1. . o.o 0.76 8.37 12.87 2.2.00 4.54 TN+BN 0.76
ll 2.5 26.7 -o.5 -0.2 1.3 0.0 1.53 10.94 4.51. 16.99 5.78 TN+BN 0.59
12 1.0 18.7 -2.9 -0.3 '1.0 0.0 0.64 7.67 27.21 35.51 6.52 TN+BN 1.23
13 2.3 25.0 -2.0 -0.3 1.2 0.0 1.41 10.24 18.86 30.50 7.66 TN+BN 1. 06
:>ACS Release 5.2 Engineers arid Consultants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 05,52,15 PST PAGE 33~
SACS-IV SYSTEM MEMBER DETAIL . REPORT
D!ST W.X MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. C'oMB.
CASE END FX MY MZ FY FZ MX STRESS y z STRESS STR,ESS COND. uNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI cHECK
lZ-20 CHB 7 0.00 0.0 1.9 0.0 0.0 :""0.1. 0.0 -0.03 0.77 co.43 -1.23 0.21 C<.lS 0.06
8 -0.2 13.1 0.1 0.0 . -0.7 0.0 -0.12 '5.38 ."--0.66 -6.16 1.58 C<.lS -0.29 9 -0.2 12.6 1.2 -0.1 -0.7 o.o -0.15 5.17 -11.80 -17.11 2.88 C<.l5 0.79 10 -0.3 12.9 0.1 o.o -0.7 o.o -0.18 5.31 -0.72 -6.20 1.61 C<.15 .o. 22 11 -2.1 10.5 0.8 -0.3 -0.7 0.0 -1.30 4.33 -7.67 -13.30 6.10 C<.lS ·0.47
12 -0.3 12.4 1.3 -0;1 -0.6 0.0 -0.20 5.09 c11.85 -17.15 2.81 C<.lS ·0 .60
13 -2.1 10.0 2.0 -0.4 -0.7 o.o -1.33 4.1.2 -18.81 -24.25 7.57 C<.lS -0.85
7 0.55 o.o 1.2 0.0 0.0 -0 .1. . 0.0 -0.03 0.50 -0.37 -0.90 0.21 C<.15 ·o. o4
8 -0.2 8.6 0.2 o.o -0.7 0.0 -0.1.2 3.53 -1.70 -5.36 1.58 C<.lS 0.25
9 -0.2 8.3 0.6 -0.1 -0.7 0.0 -0.15 3.-39 -6.01 -9.55 2.87 C<.lS 0.44
10 -0.3 8.5 0.2 0.0 -0.7 0.0. -0.18 3.49 -1.97 -5.63 1.61 C<.15 0.20
11 -2.1 6.0 -1.0 -0.3 -0.7 0.0 -1.30 2.47 9.68 10.84 6.25 C<.15 '0 .47
12 -0.3 8.1 0.7 -0.1' -0.6 o.o -0.20 3.34 -6.28 -9.82 2.80 C<.l5 "0.34
13 -2.1 5.7 -0.6 -0.4 -0.7 0.0 -1.33 2.32 5.36 6.36 7.72 SHEAR 0.40
7 1.10 0.0 0.6 o.o o.o -0.1 0.0 -0.03 0.23 -0.32 -0.58 0.20 C<.15 0.03
8 -0.2 4.1 0.3 0.0 -0.7 0.0 -0.12 1.69 -2.74 -4.56 1.57 C<.lS 0.21
9 -0.2 3.9 0.0 -0.1 -0. 7. 0.0 -0.15 1.62 -0.23 -1.99 2.87 SHEAR 0.20
10 -0.3 4.1 0.3 0.0 -0.7 0.0 -.0.18 1.68 -3.22 -5.07 1. 60 <:!<.15 -0.18
11 -2.1 1.5 -2.9 -0.3 -0.7 0.0 -1.·30 O.Gl 27.63 26.94 6.40 C<.15 ·1.03
12 -0.3 3.9 0.1 -0.1 -0.6 0.0 co.2o 1.60 -0.71 -2.51 2.79 SHEAR 0.15
13 -2.1 1.3 -3.2 -0.4 -0.7 o.o -1.33 0.54 30.14 29.35 7.87 C<.l5 1.12
20-25 CHB 7 o.oo o.o 0.6 0.0 o.o -0.1 0.0 ~o.o3 0.23 -0.11 -0.37 0.18 C<.lS -0.02
8 -0.2 4.1 0.1 o.o -0.4 0.0 -0.13 1.70 -1.05 -2.88 1.20 C<.15 0.13
9 -0.2 4.0 0.0 o.o· -0.4 o.o. -0.15 . 1.62 -0.10 -1.87 1.02 C<.lS 0.09
10 -0.3 4.1 0.0 0.0 -0.4 0.0 -0.19 1.68 -0.44 -2.31 1.06 C<.15 0.08
11 -1.6 2.1 3.3 -0.4 -0.3 0.0 -1.00 0.85 -30.84 -32.69 6.65 C<.lS 1.14
12 -0.3 3.9 -0.1 0.0 -0.4 0.0 -0.21 1.60 o·.51 1.91 0.88 C<.15 0.08
13 -1.6 1.9 3.2 -0.4 -0.3 0.0 -1.02 0.78 -29.88 -31.68 6.46 C<.15 1.10
7 0.60 0.0 0.1 o.o o.o -0.1 o.o -0.03 0.06 0.06 0.09 0.18 SHEAR 0.01
8 -0.2 1.4 0.0 0.0 -0.4 o.o -0.13 o.-sa 0.28 a. 12, 1.19 SHEAR 0.08
9 -0.2 1.2 -0.1 o.o -0.-4 o.o -0.15 0.48 0.55 0.89 1.01 SHEAR 0.07
10 -0.3 1.4 o.o 0.0 ~o.4 0.0 -0.19 0.59 0.41 0.81 1.06 SHEAR 0.06
11 -1.6 -0.2 0.6 -0.4 -0.3 0.0 -1.00 -0.09 -5.50 -6.59 6.82 SHEAR 0.36
12 -0.3 1.2 -0.1 o.o -o-.4 o.o -0.2i 0.50 0.68 0.97 0.88 C<.15 0.05
13 -1.6 -0.4 0.6 -0.4 -0.3 o.o -1.02 -0.18 -5.22 -6.43 6.63 SHEAR 0.35
7 1.21 0.0 -0.3 o.o o.o -0.1-0.0 -0.03 -·o .1.1 0.22 0.31 0.17 C<.l5 0.02
8 -0.2 -1.3 -0.2 o.o -0.4 0.0 -0.13 -0.53 . 1.60 2.01 1.18 C<.lS 0.11
9 -0.2 -1.6 -0.1 0.0 -0.4. 0.0 -0.15 -0.64 1.20 1.69 1. 00 C<.lS 0.09
10 -0.3 -1.2 -0.1 0.0 c0.4 · o.o -0.19 -0.48 -1..26 1.55 1. OS C<.15 0.07
11 -1.6 -2.5 -2.2 co.4 -0.3 o.o -1..00 -1.02 20.57 20.58 6.99 C<.lS 0.79
12 -0.3 -1.5 -0.1 o.o -0.4' 0.0 -0.21 -0.60 o.85 1.24 0.87 C<.l5 0.06
13 -1.6 ,-2.7 -2.1 -0.4 -0.3 0.0 -1.02 -1.13 20.17 20.27 6.80 C<.l5 0.78
SACS Release 5.2 Engineers and Consultants ID=-28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 342
SACS-IV SYSTEM MEMBER DETAIL 'REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR· TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
27-28 CHB 7 0.00 -0.1 -1.3 o.o 0.0 0.0 0.0 -0.03 -0.53 0.29 0.79 0.15 C<:.lS 0.04 8 -0.3 -6.7 -0.2 0.0 0.1 0.0 -0.16 -2.76 2.28 4.88 1.13 C<.l5 0.24 9 -0.3 -7.3 -0.2 0.0 0.0 0.0 -0.17 --2.99 1.97 4.78 0. 94 C<.l5 0.24 10 -0.4 C6.3 -0.3 0.1 0.1 0.0 -0.23 -2.58 3.11 5.46 1.37 C<.15 0.21 11 -1.2 -5.5 2.6 . -0.3 O.l o.o -0.73 -2.24. -24.59 -27.55 6.33 C<.15 0.96 12 -0.4 -6.8 -0.3 0.0 0.0 0.0 -0.24 -2.81 2.80 5.37 1.18 C<.15 0.20 13 -1.2 -6.0 2.6 -0.4 0.1 0.0 -0.74 :-2.47 -24.90 -28.11 6.29 C<.l5 0.98 7 0.60 -0.1 -1.4 o.o 0.0 0.0 0.0 -0.03 -0.57 .-0.06 -0.66 0.15 C<.15 0.03 8 -0.3 -6.3 0.0 0.0 0.1 0.0 -0.16 -2.60 -0.40 -3.16 1.13 C<.lS 0.15 9 -0.3 -7.1 0.0 o.o· 0.0 0.0 -0.17 -2.91. -0.42 -3.50 0.94 C<.15 0.16 10 -0.4 -5.8 0.1 0.1 0.1 0.0 -0.23 "2.39 -0.50 -3.11 1.37 C<.l5 0.11 11 -1.2 -4.4 0.1 -0.4 0.1 o.o -0.73 -1..82 -0.50 -3.04 6.51 SHEAR 0.34 12 -0.4 -6.6 0.1 0.0 0.0 0.0 -0.24 -2.-69 -0.51 -3.45 1.18 C<.15 0.12 13 -1.2 -5.2 0.1 -0.4 0.1 0.0 -0.74 -2.12 -0.52 -3.38 6.47 SHEAR 0.34 7 1.21 -0.1 -1.4 0.0 0.0 o;o o.o -0.03 -0.59 -0 .41. -1.03 0.14 C<.l5 0.05 8 -0.~ -5.9 0.3 0.0 0.1 o.o co.16 -2.44 -3.08 -5.68 1.14 C<.15 0.26 9 -0.3 -6.9 0.3 o.o o.o 0.0 -0.17 -2.82 -2.80 -5.80 0.95 C<-.15 .0 .27 10 -0.4 -5.3 0.4 0.1 0.1 0.0 -0.23 -2.18 -4.10 -6.51 1.38 C<.15 0.23 11 -1.2 -3.4 -2.6 -0.4. 0.1 o.o -0.73 -L39 24.33 24.99 6.69 C<.15 0.92 12 -0.4 -6.3 . 0.4 o.o o.o o.o -0.24 -2.57 -3.82 -6.63 1.19 C<:.15 0. 23 13 -1.2 -4.3 -2.6 -0.4 0;1 0.0 -0.74 -1.77 24.60 25.63 6.65 C<:.15 0. 94
28-2 CHB 7 0 .oo -0.1 -1.4 0.0 0.0 0.0 0.0 -0.03 -0•59 -0.41 -1.03 0.14 C<:.l5 0.05 8 -0.3 -5.9 0.3 0.0 0.1 . 0.0 -0.16 -2.44 -3.08 -5.68 1.14 C<.15 0.26 9 -0.3 -6.9 0.3 0.0 0.0 . 0.0 -0.17 -2.82 -2.80 -5.80 0.95 C<:.lS 0.27 10 -0.4 -5.3 0.4 0.1 0.1 o.o -0.23 -2.~8 -4.10 -6.51 1.38 C<.lS 0.23 11 -1.2 -3.4 -2.6 -o-.4 0.1 0.0 -0.73 -1.39 24.33 24.99 6.69 C<:.l5 0.92 12 -0.4 -6.3 0.4 o.o Q.O 0.0 -0:24 -2.57 -3.82 -6.63 1.19 C<.l5 0.23 13 -1.2 -4.3 -2.6 -0.4 0.1 o.o -0.74 -1.77 24.60 25.63 6.65 C<:.lS 0.94 7 0.29 -0.1 -1.4 0.1 0.0 o.o 0.0 -0.03 -0.59 -0.58 -1.21 0.14 C<.l5 0.06 8 -0.3 -5.7 0.5 0.0 0.1 0.0 -0.16 -2.35 -4.38 -6.90 1.14 C<.15 0.32 9 -0.·3 -6.8 0.4 0.0 o.o 0.0 -0.17 -2.77 -3.96 -6.91 0.95 C<.15 0.32 10 -0.4 -_5.1 0.6 0.1 0.1 0.0 ~0.23 -2.08 -5.85 -8.16 1.38 C<:.15 0.28
11 -1.2 ·-2 .9 -3.9 -0.4 0.1 0.0 -0.73 -1.17 36.67 37.11 6.78 C<:.lS 1.34 12 -0.4 -6.~ 0.6 0.0 o.o . 0.0 co .. 24 -2.50 -5.44 -8.18 1.19 C<.l5 0.28 13 -1.2 -3.9 -3.9 -0.4 0.1 o.o -0.74 -1.59. 37.08 37.94 6.74 C<.lS 1.37
7 0.59 -0.~ -1.5 0.1 0.0 0.0 0.0 -0.03 -0.60 -0.75 -1.38 0.14 C<.lS 0.06
8 -0.3 -5.5 0.6 o.o 0.1 0.0 -0.16 -2.27 -5.68 -8.11 1.15 C<.lS 0.38
9 -0.3 -6.6 0.5 0.0 0.0 o.o -0.17 -2~72 -5.12 -8.02 0.96 C<.lS 0 .3?
10 -0.4 -4.8 0.8 0.1 0.1 0.0 -0.23 -1.98 ·-7.60 -9.81 1.39 C<.lS 0.34
11 -1.2 -2.3 -5.2 -0.4 .0.2 0.0 -0.73 -0.95 49.18 49.41 6.87 C<.15 1. 77 12 -0.4 -5.9 0.7 0.0 0.0 0.0 -0.24 -2.43 -7.05 -9.?2 1.20 C<.l5 0.34 13 -1.2 -3.4 -5.3 -0.4 0.1 o.o -0.74--1.41-49.74 50.42 6.83 C<.lS 1.80
SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:.15 PST PAGE 298
SACS-IV SYSTEM MEMBER DETAIL 'REPORT
DIST
MAX MEMBER GRP LOAD PROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ J!Y FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK
F-FQ CS 7 0.00 0.0 o.o 0.0 o.o 0.0 o.o 0.00 -0.02 0.05 0.07 0.09 SHEAR 0.01 8 0.0 -0.4 -0.1 o.o 0.3 0.0 -0.01 -0.23 0.39 0.62 0.99 SHEAR 0.07 9 0.0 -0.4 -0.1 o.o 0.3 o.o -0.01. -0 .• 23 0.40 0.62 1.00 SHZAR 0.07 10 0.0 -0.4 -0.1 o.o 0.3 o;o -0.01 ~0.23 0.50 0. 73 1. 03 SHZAR 0.05 11 o.o -0.4 -7.3 0.2 0.3 0.0 -0.01 -0.23 34.20 34.42 3.64 C<.15 1.20 12 o.o -0.4 -0.1 o.o 0.3 0.0 -0.01 C0.23 0.51 0.73 1.03 SHZAR 0.05 13 o.o -0.4 -7.3 0.2 -0.3 o.o -0.01 -'_0. 23 . 34.21 34.42 3.64 C<.15 1.20 7 2.00 0.0 0.4 o.o o.o o.o 0.0 o.oo 0.20 -0.01. -0.21 0.05 C<:.l5 0.01 8 0.0 4.8 0.0 o.o 0.1._ 0.0 .-0. 01. 2.53 .;..0.04 -2.58 0.57 C<:.l5 0.12 9 0.0 4.8 0.0 o.o 0.1 o.o -0.01 2.53 -o;os -2.59 0.57 C<.lS 0.12' 10 o.o 4.8 0.0 o.o 0.1 .. 0•0 -0.01 2.53 -o.o5 -2.59 0.60 C<:.15 0.09 11 o.o 4.8 -1.5 0.2 0.1 o.o--0._01 2.54 6.82 9.34 3.21 C<.15 0.33 12 o.o 4.8 0.0 o.o 0.1 0.0 -0.01 2.53 -o.o5 -2.59 0.61 C<.lS 0.09 13 0.0 4.8 -1.5 0.2 0.1 o.o -0.01 2.54 6.81 9.34 3.22 C<:.15 0.33 7 4. 00 0.0 0.5 0.-0 o.o o.o 0.0 o.·oo 0.27 -0.07 -0.34 0.02 C<:.lS 0. 02 8 0.0 6.5 0.1 o.o 0.0 0.0 -0.01 3.46 -0.47 -3.94 0.14 C<.lS 0.18 9 0.0 6.5 0.1 o.o 0.0 0.0 -0.01 3.46 -0.49 -3.96 0.14 C<:.15 0.18 10 o.o 6.5 0.1 o.o 0.0 0.0 -0.01 3.46 co.60 -4.07 0.17 C<:.15 0.14 11 0.0 6.5 4.4 0.2 0.0 o.o -o .·o1 3.48 -20.57 -24.06 2.83 C<:.l5 0. 84 12 o.o 6.5 0.1 0.0 0.0 0.0 -0.01 3.46 -0.61 -4.08 0.18 C<.15 0.1_4 13 o.o 6.5 4.4 0.2 o.o 0.0 -0.01 3.48 -20.59 -24.08 2.83 C<:.15 0.84
FQ-15 C5 7 0.00 0.0 0.5 0.0 0.0 0.0 o:o 0.00 0.27 -0.09 -0.37 0.03 C<.lS 0.02 B o.o 6.5 0.1 o.o 0.0 o.o -0.01 3.46 -0.53 -4.00 0.15 C<:.lS 0.19 9 0.0 6.5 0.1 o.o 0.0. 0.0 -0.01 3.46 -0.57 -4.04 0.15 C<:.15 0.19 10 0.0 6.5 0.1 0.0 . o.o o.o -0.01 3.46 -0.65 -4.12 0.18 C<:.lS 0.14 11 0.0 6.5 -4.1 0.2 0.0 . 0.0 0.00 . 3.45 19.14 22.59 2.70 C<.15 0.78 12 0.0 6.5 0.1 .o. 0 o.o. o.o -o .:01. 3.46 -0.69 -4.16 0.19 C<:.15 0.14 13 0.0 6.5 -4.1 0.2 o.o .0.0 0.00 3.45 1.9.10 22.55 2-70 C<.15 0.78 7 2.00 0.0 0.4 0.0 o.o 0.0 0.0 o.oo 0.20 a.oo -0.20 o.o6 C<.15 0.01 8 o.o 4.8 0.0 o.o -0.1 0.0 -0.01 2.53 -0.02 -2.56 o.s7 C<:.l5 0.12 9 0.0 4.8 0.0 o.o -0.1 0.0 '-0.01 2".53 -0.02 -2.56 o.s8 C<:.lS 0.12 10 0.0 4.8 0.0 o.o ~0.1 0.0 -0~01. 2.53 -0.03 -2.57 0.61 C<.15 0.09 11 0.0 4.7 1.5 0.2 ---0,;1. o.o 0.'00 2.52 .. -6.91 -9.44 3.08 C<.15 0.33 12 0.0 4.8 0.0 0.0 . -0.1 0.0 "o:o1 2.53 -0.03 -2.57 0.62 C<:.15 0.09 13 0.0 4.7 1.5 0.2 -0.1 0.0 OiOO 2.52 -6.91 -9.44 3.09 C<.15 0.33 7 4. 00 0.0 o.o o.o o.o o.o o;o o.oo -0.02 0.09 0.11 0.09 SHEAR 0.01 8 o.o -0.4 -0.1 o.o -0.3 0.0 -0.01 ~0.23 0.48 0.71 1.oo SHEAR 0.07 9 o.o -0.4 -0.1 o.o -0.3 o.o -0.01 -0.23 0.53 0.75 1.01 SHZAR 0.07 10 0.0 -0.4 -0.1 o.o -0.3 0.0 -0;01 -0.23 0.59 0.82 1.04 SHZAR 0.05 11 0.0 -0.4 7.1 0.2 -0.3 0.0 o.oo -0.23 -32 .. 97 -33.20 3.51 C<.l5 1.15 12 0.0 -0.4 -0.1 o.o -0.3 o.o -0.01 -0.23 0.64 0.86 1. 04 SHZAR 0.05 13 o.o -0.4 7.1 0.2 -0.3 0.0 0.00 -0,23 -32.92 -33.16 3.51 C<:.lS 1.15
J-FU C1 7 0.00 o.o 0.3 o.o 0.0 0.0 0.0 o.oo . 0.17 0.02 0.19 0.04 BEND 0.01 8 0.1 3.1 -0.:1 o.o 0.3 0.0 0;04 1.76 0.34 2.15 0.52 BEND 0.13 9 0.1 -5.6 o:1 0.0 0.3 0.0 0.08 -3.18 -0.30 -3.40 0.50 BEND 0.23 10 0.1 3.1 -0.1 0.0 0.3 0.0 0.04 1..76 0.41. 2.21 0.54 BEND 0.10 11 -0.3 20.2 -3.3 0.1 0.1 ().O -0.21. 11.57 12.68 24.05 o.sa C<.15 1. OS 12 0.1 -5.6 0.1 o.o _0.3 o.o 0•08 -3.19 -0.23 3.34 0.48 BEND 0.17 13 -0.2 11.6 -3.2 0.1 0•1 0.0 ·-0.17 6.63 12.05 18.50 0.46 C<.15 0.77 7 2.00 0.0 0.6 0.0 o.o 0.0 o.o o.-oo 0.37 -0.01 -0.38 0.02 BEND 0.03
8 0.1 8.2 o.o 0.0 0.1 o.o 0.04 4.66 0.04 4.75 0.29 BEND 0.32
9 0.1 -0.3 0.1 0.0 0.1 o.o 0.08 -0.17 ·-0.29 -0.39 0.27 BEND 0.03
10 0.1 8.1 o.o o.o 0.1 o.o 0.04 4.66' . 0.04 4.75 0.31 BEND 0.24
11 -0.3 21.5 -0.3 0.1 0.0 o.o -0.21 12.33 .1.22 13.34 0.49 C<.lS 0.69
12 0.1 -0.3 0.1 0.0 0.1 o.o 0.08 -0.18 -0.29 -0.39 0.25 BEND 0.02
13 -0.2 13.1 -0.2 0.1 o.o o.o. -0.1.7 7 .. 49 0.69 8.21 0.36 C<.lS 0.43
7 4.00 o.o 0.8 o.o 0.0 o.o o.o. 0.00 0.44 -0.04 -0.48 0.01 BEND 0.03
8 0.1 9.8 0.1 o.o 0.0 o.o 0.04 5.61 -0.26 -5.83 0.08 BEND 0.40
9 0.1 1.6 0.1 0.0 0.0 o.o 0.08 0.89 -0.29 -1.10 0.05 BEND 0.07
10 0.1 9.8 0.1 o.o· 0.0 o.o 0.04 5.61 -0.32 -5.68 0.10 BEND 0.30
11 -0.3 19.5 2.7 0.1 -0.2 o.o -0.21 11.13 -10.24· -21.58 0.60 C<.l5 0.94
12 0.1 1.5 0.1 o.o 0.0 o.o 0.08 0.88 -0.35 -1.15 0.03 BEND 0-.06
13 -0.2 11.2 2.7 0.1 -0.2 o.o -0.17 6.41 -10.27 -16.85 0.48 C<.l5 0.70
SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-PEB-2008 TIME 08:52:15 PST PAGE 240
SACS-IV SYSTEM MEMBER DETAIL REPORT
DIST
MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI . KSI KSI KSI CHECK
Y-G9 C1 7 0.00 0.0 o.o ·o.o 0.0 o.o . 0.0 0.00 -0.02 0.01 0.02 0.04 SHEAR 0.00 a 0.0 -0.4 0.0 0.0 0.3 0.0 -0.04 -0.23 0.10 -0.30 0.56 SHEAR 0.04 9 0.1 -0.6 -0.1 0.0 0.3 ·o.o 0.12 -0.33 0.3a 0.83 0.56 SHEAR 0.04 10 0.0 -0.4 0.0 0.0 0.3 0.0 -0.04 -0.23 0.15 0.35 0.57 SHEAR 0.03 11 -0.2 -0.2 2.1 -0.1 0.3 0.0 -o.1a -0.12 -7.86 -8.16 0.83 C<.lS 0.29 12 0.2 -0.6 -0.1 0.0 0.3 o.o 0.12 -0.33 0.43 0.88 0.55 TN+BN 0.03 13 0.0 -0.4 2.0 -0.1 0.3 0.0 -0.02 co.23 -7.58 -7.83 0.59 C<.15 0.28 7 2.00 0.0 0.3 o.o 0.0 0.0 0.0 0.00 . 0.19 o.oo -0.19 0.03 C<.15 0.01 a o.o 4.a 0.0 0.0 0.1 0.0 -0.04 2.74 o.os -2.79 0.33 C<.15 0.19 9 0.1 4.4 0.0 0.0 0.1 0.0 0;12 2.53 -0 .. 16 2.70 0.34 BEND 0.18 10 0.0 4.a o.o 0.0 0.1 0.0 -0.04 2.74 0.04 -2.79 0.35 C<.15 0.14 11 -0.2 5.1 0.1 -0.1 0.2 o·.o -0.18 2.95 -0.49 -3.61 0.65 C<.15 0.18 12 0.2 4.4 0.0 0.0 0.1 0.0 0.12 2.53 -0.17 2.71 0.33 BEND 0.14 13 0.0 4.8 0.2 -0.1 0.1 0.0 -0.02 2.74 -0.70 -3.46 0.40 C<.15 0.17 7 4.00 0.0 0.5 0.0 o.o 0.0 0.0 0 •. 00 0.27 0.00 -0.27 0.01 C<.l5 0.02 8 0.0 6.6 o.-o o.o o.o o.o -0.04 3.75 -0.01 -3.80 0.11 C<.15 0.26 9 0.1 6.0 0.2 0.0 0.0 0.0 0'12 3.45 -0 •. 71 -4.03 0.14 BEND 0.27 10 0.0 6.6 0.0 o.o o.o 0.0 --0.04 3.75 -0.07 -3.86 0.12 C<.15 0.20 11 -0.2 7.1 -1.8 -0-1 o.o 0.0 -o.1a 4.06 6.87 10.76 0.53 C<.15 0.46 12 0.2 6.0 0.2 0.0 0.0 o.o . 0.12 3.44 -0.76 -4.09 0.13 BEND 0.20 13 0.0 6.6 -1.6 -0.1 0.0 0.0 -0.02 3.76 6.17 9.91 0.28 C<.15 0.41
z-GA Cl 7 0.00 0.0 0.4 0.0 o.o 0.0 0.0 0.01 0.21 0.02 0.23 0.03 BEND 0.01 8 0.1 3.4 0.0 0.0 0.3 o.o 0.05 1.94 0.03 2.02 0.46 BEND 0.13 9 0.1 -10.a -0.1 0.0 0.3 o.o 0.10 ~6.19 0.26 6.56 0.51 BEND .o .43 10 0.1 3.4 o.o o.o 0.3 0.0 0.05 1.95 0.09 2.09 0.47 BEND 0.10 11 -0.3 24.6 2.7 -0;1 0.1 0.0 -0.22 14.07 -10.14 -24.44 0.36 C<.15 1. 09 12 0.1 -10.8 -0.1 0.0 0.3 0.0 0.10 -6;19 0.32 6.61 0.53 BEND 0.32 13 -0.2 10.4 2.6 -0.1 0.1 0.0 -0.17 5.94 -9.92 -16.02 0.40 C<.l5 0.66 7 2.00 o.o 0.7 0.0 o.o o.o 0.0 0;01 0.40 . 0.00 0.41 0.02 BEND 0.03 8 0.1 a.5 0.0 0.0 0.1 0.0 0.05 4.a4 -0.04 4.90 0.23 BEND 0.34
9 0.1 -5.5 0.0 o.o 0.2 o.o 0 .. _10 -3_.12 0.10 3.32 0.29 BEND 0.22 10 0.1 a.5 0.0 0.0 0.1 0.0 0.05 4.84 -0.03 4.90 0.25 BEND 0.25 11 -0.3 24.9 0.2 -0.1 ' . -0-.1 o.o -0.22 14.26 -0.83 -15.32 0.34 C<.l5 0.?8 12 0.1 -5.4 0.0 . 0.0 0.2 0.0 0~10 -3.12 . 0.10 3.32 0.30 BEND 0.16 13 -0.2 11.0 0.2 -0.1 0.0 o.o -o:17 6.30 -0.70 -7.17 0.36 C<.15 0.36 7 4.00 0.0 o.a 0.0 0.0 o.o o.o o;o1 0.47 -0.02 -0.48 0.00 BEND 0.03 a 0.1 10.1 0.0 o.o o.o o.o o.os . s. 78 -0.11 5.66 0.02 BEND 0.40
9 0.1 -3.5 0.0 o.o •. 0.0 o.o 0.10 -2.00 -0.07 2.12 0.06 BEND 0.14
10 0.1 10.1 0.0 0.0 o.o 0.0 o:o5 5.7a ·-0.16 -5.90 0.03 BEND 0.30 11 -0.3 21.a -2.2 -0.1 -0.2 0.0 -0.22 12.50 8.4'8 20.75 0.46 C<.l5 0.95 12 0.1 -3.5 0.0 0.0 0.0 o.o 0·10 -2.00 -0.12 2.14 o.oa BEND 0.11 13 -0.2 a.2 -2.2 -0.1 -0.2 0.0 -0.17 4·.71 8.52 13.06 0.48 C<.l5 0.55
SACS Release 5.2 Engineers and COJisliltants ID=28040200
PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26~FEB-2008 TIME 08:52:15 PST PAGE 301
SACS-IV SYSTEM MEMBER DETAIL 'REPORT
DIST MAX
MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB.
CASE END FX MY MZ F'l FZ MX STRESS y z STRESS STRESS COND. UNITY
FT KIPS IN-KIP IN-KIP KIPS KIPS IN-RIP KSI KSI KSI KSI KSI CHECK
20-2H C6 7 o.oo o.o -0.1 o.o 0.0 o.o 0.0 o.oo -0.03 0.11 0.15 0.13 SHEAR 0.01
8 0.0 -0.5 -0.2 0.0 0.3 o.o 0.03 -0.26 0.92 1.20 1.04 SHEAR 0.07
9 -0.1 -0.4 0.0 0.0 0.3 0.0 -0.06 -0.23 0.09 -0.29 0.87 SHEAR 0.06
10 o.o -0.5 -0.3 0.0 0.3 o.o 0.02 -0.26 1.52 1. 80 1.11 TN+BN 0.06
11 0.1 -0.6 6.9 -o.5 0.4 -0.6 0.05 -0.30 -32.50 -32.76 7.85 BEND 1.14
12 -0.1 -0.4 -0.1 o.o 0.3 0.0 -0.06 -0.23 0.69 0.86 0.94 SHEAR o.os
13 0.0 -0.5 7.'1 -o.5 0.3 -0.7 -0.03 -0.27 -33.33 -33.64 7.84 C<.15 1.17
7 1.16 0.0 0.4 0.0 0.0 0.0 o.o 0.00 0.21 0.03 0.24 0.11 TN+BN 0.01
8 0.0 3.0 -0.1 0.0 0.2 o.o 0.03 1.61 0.23 1. 87 0.75 -TN+BN 0.09
9 -0.1 2.6 0.0 0.0 0.2 0.0 -0.06 1.41 -0.11 -1.58 0.58 C<.15 0.07
10 0.0 3.0 -0.1 0.0 0.2 ·o.o 0.02 1.61 0.25 1.88 0.82 TN+BN 0.07
11 0.1 3.8 0.3 -o.5 0.3 -0.6. 0.05 2.05 -1.27 -3.27 7.56 SHEAR 0.39
12 -0.1 2.6 0.0 0.0 0.2 0.0 . •0.06 1.41 -0.09 -1.57 0.65 C<.15 0.06
13 0.0 3.5 0.3 -o.5 0.2 -0.7 .:..o.o3 1.85 -1..62 -3.50 7.56 SHEAR 0.39
7 2.31 0.0 0.8 o.o o.o o.o o.o 0.00 0~40 -0.06 -0.46 0.09 BEND 0.02
8 o.o 5.1 0.1 0.0 0.1 0.0 0.03 2.75 -0.45 -3.18 0.46 BEND 0.15
9 -0.1 4.4 0.1 0.0 0.1. ·o.o .-0.06 2.33 -0.31 -2.70 0.29 C<.l5 0.13
10 o.·o 5.2 0.2 0.0 0.1 0.0 0.02 2.76 -1.02 -3.76 0.53 BEND 0.13
11 0.1 6.9 -6.4 -o.5 0.2 -0.6 0.05 3.68 29.96 33.69 7.28 TN+BN 1.17
12 -0.1 4.4 0.2 o.o 0.1 0.0 -0.06 2.34 -0.88 -3.28 0.37 C<.l.S 0.11
13 0.0 6.1 -6.4 -0.5 0.1 -o-. 7 _·-o~o3 3.26 30.10 33.33 7.28 C<.15 1.16
2I-24 C6 7 0.00 0.0 0.8 o.o o.o o.:o o.o o.oo . 0.41 -0._01 -0.42 0.08 BEND 0.02
8 o.o 5.2 0.0 0.0 -0.1 o.o o;o3. ·.2.77 -0.23 -2.97 0.43 BEND 0.14
9 -0.1 4.4 0.0 o.o -0.1 o.o -o~-o6 2.34 -0.12 -2.52 0.27 C<.15 0.12
10 0.0 5.2 0.1 o.o -0.1 0.0 o;o2 2.78 -0.64 -3.40 0.49 BEND 0.12
11 0.1 5.3 7.0 -0.5 -0.1 -o. 1 o.o8 2.86 -32;93 -35.72 7.76 BEND 1.24
12 -0.1 4.4 0.1 o.o -0.1 !LO -0.06 2.35 -0.54 -2.95 0.32 C<.15 0.10
13 0.0 4.5 7.0 "0.5 -0.1 -0.7 -o:o1 2.43 -32.83 -35.27 7.61 C<.lS 1.23
7 1.16 0.0 0.4 0.0 0.0 o.o o.o o;oo 0.21 0.03 0.24 0.10 TN+BN 0.01
8 0.0 3.0 0.0 o.o -0.2 0.0 0.03 1.61 0.22 1.86 0.72 TN+BN 0.09
9 -0.1 2.6 0.0 o.o -0.2 0.0 -0.06 1.41 -0.12 -1.59 0.56 C<.15 0.07
10 0.0 3.0 0.0 0.0 -0.2 0.0 0.02 1•62 0.22 1. 87 0.77 TN+BN 0.06
11 0.1 3.1 -0.4 -0.5 "0.2 -0.7 o.:o8 1.65 2.05 3.78 8.03 SHEAR 0.42
12 -0.1 2.6 0.0 0.0 -0.·2 o.o -0.06 1.42 -0.11 -1.59 0.61 C<.lS 0.06
13 0.0 2.7 -0.4 -0.5 ,;0.2 -o. 7 ·-0.01 1.45 1.72 3.16 7.87 SHEAR 0.41
7 2.31 0.0 -0.1 0.0 o.o o.o 0.0 o.oo -0.03 0.07 0.10 0.12 SHEAR 0.01
8 0.0 -0.5 -0.1 0.0 -0.3 0.0 0.03 •0.26 0.66 0.95 1.01 SHEAR 0.07
9 -0.1 -0.4 o.o ·o.o -0.3 o.o -0~06 -0.23 -0 ._1.2 -0.40 0.84 SHEAR 0.06
10 0.0 -0.5 -0.2 o.o -0.3 0.0 0.02 -0.26 1.09 1.37 1.06 SHEAR 0.06
11 0.1 -0.5 -7.9 -0.5 -0.3 -0.7 0.08 -0.27 37.04 37.38 8.31 TN+BN 1.30
12 -0.1 -0.4 -0.1 o.o -0.3 0.0 -0:.06 -0.23 ·o.Jl. 0.48 0.90 SHEAR 0.05
13 o.o -0.4 -7.7 -o.s -0.3 -0.·7 -0-.01 --0.24 '36.26 36.49 8.14 C<--15 1. 27
h). . MISCELLANEOUS CALCULATION. ·
0\IPROJECT
17"'1ASSOCIATES ----·"?'·············
sv,.,~~· "to~J:L:-. ___ DATE kb -Z?g'
CHKED.BY u. M DATE tR/12/6Yj
11999 Koly Fwy.
Suite 560
Houston, lX 77079
6660 Riverside Drive
Su~e 300
Metairie, LA 70003
)
~~b~· ""·· .·.: .·.
} . ~ ' . ."\<l::, ====
.J3 I ..
1<""--=;:.-~"BB
"' -------'·-...
'
. .L
' ·'··. . _, ----~.---.' ••'<' _,.,:.. ··i·' . ·;-·
! ....... , ..
' I ··:· ....
•
.. -~-: --~---1------i-~---;·
I. '
.. , --~----~-. +-.. }-___ ,L :. i
'£7UvP: pLD): ;;~~!~. corr-~} .. : ....
'
.t ...•... --~-J.-.. ·····l . !
. --~ ... ..:~ .. -~-----:-1
. i I I
•. -~-~ .. '.!. .. -----i '. !
___ ;·.~-... ~. -_J·: ... ~:r~--;T
D\IPROJECT
1M ASSOCIATES ---··············
) BY ~....J? J ·
C;;;; BY ec Wt
DATE F<.P -o;l;;.
DATE (; {171 () l:j
11999 Kaly Fwy.
Suite 607
Houston, TX 77079
6660 Riverside Drive
Suite 300
Metairie, LA 70003
SUBJECT f?c.£1?-l?C/E. 'f"".fiC::: J;"""l:zh, SHEET NO. p OF~~
t{CC. 6.t..z1G JOBNO. 2r2 ?3, ZC;>-/
, ;PM-.&/"'fPv~q :i~s.s ~ o;<J ~~~citU.. 1Ea.+.!:.·
, C!ttM iP. ¥.i?.6.:r~ <Q JFC T/0 N 'f?IC.o P£1¥11 . . . .. : ....
' .--. .• ...l '·~ . . ··--.. •• ·-··
2/58-27'1
·'" .....
t
. . . y··
. ; //,...._ CH>"'J$7'/ .•
·'
r:Y\IPROJECT
IMASSOCIATES
INCORPORATED
11999 Kafy Fwy.
Suite 607
Houston, TX 77079
6660 Riverside Drive
Suite 300
Metairie, LA 70003
BY~J.
CHKED. BY e CA1.
DATE T~-t?tg.
DATE {a/rJ/6'j(
SUBJECT b' C ea.we<.-~1_.1;;<0 SHEET NO.-=c.J _____ OF __ _
--'-1'1-"cx..=-==---"'6"'· >J-"'12"'-"~"-----JoB No. -zo '?->" '2 = I
.,_ ..... , ... :-,)
' ··•,
,',. ~ .
.; ,. I
' . ''
. ' ~-.
--~ ' ' . '
-'' ~},
' I···'""'~ . --··~: ----.
' '
;, ~-. .:.. ·'-·
' ... ---..
·-~.l-······')>·
. '"""''' ...... :"" . ..,,,,,, _____ , "_,_ 1 ···•··· --~
....... -.. +-
'·----····'··
I,
·······::-··· -.\.'
.. ...... "'" >'· ··i· .... , ..
I
· ...... :. -~~-
l ·i"-.,; __ --.... -t··· . i--~.:.... ..... ' 1 .. ·-· .... 1"' '''(' -~ .. . --;-----:· , ..
, ..
i
.'.. ..
·-----1-.c ····' ..... _.\, ,
l"'
l --t • ·!-· (''. ' !<.. ): .
+-· .. -~ ..... " ·-. ~--··· ~ . ·-·-.. ·----:: -~--
. t
rY\IPROJ ECT
I'M ASSOCIATES
INCORPORATED
) sv£u4 S. \ ~ ec ...... CHKED. BY ~ ..,... ~
.3.?/7S 1
11999 Ka1y Fwy.
Suite 607
Houston.TX 77079
. '~()J(Jr~~> • · ~~-.~ .. z~?Jit!?,
8~~-' .•
6660 Riverside Drive
Suite 300
Metairie. lA 70003
. . ~··. .. ~··· .
'--··
I:Y\IPROJECT
I'M ASSOCIATES
INCORPORATED
11999 Katy Fwy.
Suite 607
Houston, TX 77079
6660 Riverside Drive
Suite 300
Metairie, LA 70003
) BY ,4® s~
CHKED. BY e (;N't
DATE,..,$=;./-"&::!./.~'-"~'--'IJ.=o.___SUBJECT jOet;(J..!/'J.{:fea'F,L C.!t.t!f · $HEETN0._;2""'--~--0F __ _
DATE__,.ti.-r<oJ/.c<ct7~l.,O,.,g.___..~.!(~C~C.:::. -..::!~~. ·=2;·-!· •:__ ___ JOB NO. ________ _
)
' .• J .••
.• ·¥-<·
~;;,;;:.:
...•• ! .•••
~ -.. · .. ,
····! -----~-
!
-------~'-·---~---·
..... ,.
l
· io;/57'1 11 . "'")' f-r· .. -;. ,
''1
. .
, I .. .;.----: ... •··-··'
i
i -'. _ _," --~--
.,
. ..•. ~·-· " •• ! .
. '
y·~--"• . ~·-··
. i
... :, .. _ .. i .•.... ...:..,. ··;··· ;-·
• _____ .;. ..... ..i.
'·-. . -~. .. .. -
. f, . ~-'•
. ;
··1' ----....... ~----·_1_ ..
. :.
.. .
--~-.. ---;---~ ·: +-~~
-.f .... --... i .. ~--
l,
.. +
.: ...
··-:
. .... +· .
-----~-
..L •
. ... .;.
--·-·· --;.
. ---+---+----·'-
. ·y-_._ ... j-' "''''! .... ;
, .....
. ~-
----?--.
. i
i
'
' ~--·
. ·'···· ··-;
... '--' ..
..... ,.!
) THCK. ITEM 1-------(!1 ):
1 nvr ITEM 2-------(!2):
: 1 MI..' I\. ITEM 3------(!3):
i 1 Mvr ITEM 4-------(!4):
I' nvr ITEM 5-------(!5):
II Mvl\. ITEM 6------(!6):
\RE." ITEM 1------------:
• ..,., A ITEM 2-----------:
IARI=A ITEM 3------------:
lAc><: A ITEM 4-----------:
I A R "'A ITEM 5------------:
1".RE." ITEM 6-----------:
0.236 IN.
0.236 IN.
0.236 IN.
0.236 IN.
0.236 IN.
0.236 IN.
0.46492 INA2.
0.427396 IN'2.
1.505208 IN'2.
1.47736 IN'2.
0.455244 I N'2.
0.464684 IN'2.
SHEETNo6
WIDTH
ITEM 1--d1:
ITEM 2--d2:
ITEM 3--d3:
ITEM 4--d4:
ITEM 5--d5:
ITEM 6--d6:
Z1=
Z2=
Z3=
Z4=
Z5=
Z6=
.. .
1.693 IN. Y1 =
0.9055 IN. Y2=
0.118 IN. Y3=
3.13 IN. Y4=
6.142 IN. Y5=
7.2445 IN. Y6;:
·~~IT~~~~~~--~z.-.--~A~*Z--~Z~,,.-.--~A*ZI~''A~2--~Io-------,l ·
. . . . .
NEl. , , AXIS-Cz: 2.532 IN.
NEUTRAL AXIS-Cz': 5.697 IN.
1 0.46492
2 0.421<1l:IC
3 1
4 1. 36
5 n.
6
112
i'"''u 1 ' AXIS-Cy:
!NEUTRAL AXIS-Cy':
_)· jY DIMENSION =
. jz DIMENSION =
Y SHEAR AREA =
. z SHEAR AREA=
i 1 resist.. R=
.· ..
y .· A*Y
.
0.985 .· I O.<tOI .... o
2.
5.:
8.
7.620
6.773 ~.-,.,, "uo
28.94
6.036 IN.
2.784 IN.
12.07262 IN.
11.39487 IN.
2.425 SQ-IN .
2.369 SQ-IN.
0.088928 IN'4
.
.
Y'
5.05
•.95
1.64
~-~
-1
-0.
lz-z---:
Sz--z:
ly-y--:
Sy-y-~:
32.11 1NA4 .
5.64 1NA3
11.86 0.150
6.66
0.62
0.50
14 . 0.141
1 • ..!5 0.002
. .
I
1.97 IN.
1.811 IN.
6.378 IN.
6.26 IN.
1.929 IN.
1.969 IN.
0.985 IN .
2.088 IN.
5.395 IN.
8.702 IN.
7.6195 IN.
6.773 IN.
.
.
.
IPAI JOB# ~M~ ~!~IES MCC BUI l:ii1CC 1 No. 7
SECTION PROPERTIES~~~~.S~ILL~.=~·C~SR~~:::::::::j
j
! I HGK. ITEM 1-------(!1 ): 0.1771
iTHCK. ITEM 2-------(!2): 0.1771
ITHCK. ITEM 3-------(13): 0.1771
II HGK. ITEM 4------(14 ): 0.1771
l_::'l'r ITEM 5-------(15): 0.1771
[THCK. ITEM 6-------(16): 0
I e.REt ITEM 1------------: 0.422012
·~-· ITEM 2------------: 0.976175
1.~-· . 0.784075 ITEM 3------------:
1• .,,... ITEM 4------------: 0.226529 1-~-· . 0.313821 l ... r-. ITEM 5------------.
ITEM 6---------: 0
. ITEM -A:REA. z A*Z
c:f n nr = 0.037
. 0.! 756 2.690
en 'fl199 4.406
1.193 ·= rD. 13B2f' ' ~ 1.480~
J
0
.. 2.722611
!NEUTRAL AXIS..Cz:
rRAL AXIS·Cz':
.. __ _
·ffiE AR
3
4
6
12
1.976175
. 313!!21
0
!NEUTRAL AXIS-Cy: .I NEUTRAL AXIS-Cy':
..
• ) IY DIMENSION = . lz DIMENSION =
'Y SHEAR AREA=
Z SHEAR AREA=
! 1 resist.. R=
0 0.000
3.602 IN.
2.303 IN.
y
9.81
A*Y
1.369 . IO.t>((t>Ot>
0:1 ~9
2. 32
4. 5 .059112
.773()9
0.)00 0
.
1.970 IN.
4.566 IN .
9.132 IN.
7.204 IN.
1.520 SQ-IN.
1.203 SQ-IN.
0.028436 1NA4
WIDTH
IN. ITEM 1--
IN. ITEM 2--
IN. ITEM 3--
IN. ITEM4-
IN. ITEM 5--
IN. ITEM 6--
INA2. Z1=
INA2. Z2=
INA2. Z3=
INA2. Z4=
INA2. Z5=
INA2. Z6=
z· A*Z' •2
··3.51
0.85
. -2.02
-1.66
~·-1.11 ~ I· •·
3.60 0.01
10:12
IY·Y·"·:
Sy-y-:
d1:
d2:
d3:
d4:
d5:
d6:
0.0886 IN. Y1=
2.756 IN. Y2=
5.6199 IN. Y3=
5.2655 IN. Y4=
4.7145 IN. Yp=
0 IN. Y6=
:ro
.
0.001
·2.All_ ~ · ..
' 0.001 ·. . .. ' ...
0.000
2.51
12.62 INA4
3.50 INA3
I
I
Y' A*Y'•2 Io · . I
0.60
1.88
:().41
-2.7
1.9
IZ.Z···:
Sz--z:
0.1C
3.4E
0.1:
1.61
4.2
0.0
0.200
0.
1
0.
0.082
0.000
1.57
.
.
2.3829 IN.
5.512 IN.
4.4273 IN.
1.2791 IN.
1.772 IN.
0 IN.
1.3686 IN.
·0.0886 IN.
2.382 IN.
4.6754 IN.
5.65
0 IN.
.
.. .·.
~~~JOB# ?n~~ .,~!IES MCC l:IMt:t: ,·No.8
SECTION PROPERTIES :POST ~REAR END= CL 1
WIDTH
)
· 1 Hvl\. ITEM 1-------(t1 ): 0.236 IN. ITEM 1--d1: 8.588 IN.
irHCK. ITEM 2-------(!2): 0.236 IN. ITEM 2--d2: 1.181 IN.
i 1 nvl\. ITEM 3------(!3): 0.4724 IN. ITEM 3--d3: 3.5052 IN.
i 1 Hvl\. ITEM 4------(!4): 0.4724 IN. ITEM4--d4: 1.575 IN.
iTHCI\. ITEM 5-------(tS): 0.236 IN. ITEM 5--d5: 1.969 IN.
1' nvr ITEM 6-------(!6): 0.4724 IN. ITEM 6--d6: 1.575 IN.
1 !"'vi\. ITEM 7 -------(t7): 0.236 IN. ITEM 7--d7: 1.811 IN.
ARFA ITEM 1-----------: 2.026768 IN•2. Z1= 0.118 IN. Y1= 4.53 IN.
AREA ITEM 2------------: 0.278716 IN•2. Z2= 0.5905 IN. Y2= 0.118 IN.
:ARFA ITEM 3--·········-: 1.655856 IN•2. Z3= 1.5748 IN. Y3= 4.312 IN.
'Cl:: A ITEM 4------------: 0.74403 INA2. Z4= 1.0235 IN. Y4= 0.4722 IN.
A<><= A ITEM 5----------: 0.464684 INA2. Z5= 1.693 IN. vs= 10.0445 IN. ,.;:;;· 0.74403 IN•2. Z6= 1.0235 IN. Y6= 6.7732 IN. ITEM 6-----------:
1AREA ITEM 7----------: 0.427396 INA2. Z7= 0.9055 IN. Y7= 8.942 IN.
ITEM AREA z A"'Z Z' A"'Z'A2 Io I
.
~ OJH '8 . 1.24 J9
1!\!:lr 11 0.03 32
.574~ )7 . . 75 .
235 . . 12 1.01
'.4 4 1.1 !93 .... ·. ... . . ... _, '9 · .. I .29 .... ... •. . . .... ··. . ...
~~~ 235 0.7 2 -1 12 1.01 (.
0.3 ( 1.(11 0.00 (
.71 2.34 . .50
.
~~~~!~~ AXIS-Cz: 0.900 IN. . ly-y--: 2.83 1NA4
!NEUTRAL AXIS-Cz': · 0.911 IN. Sy-y--: 3.11. INA3
:. . . .. ·.
AREA y A"'Y Y' A"'Y'A2 Io I
. ' . .
1 530 19.' 0.24 12.457
2 ~ 118 10.~ 4.65 0.001
3 312 0.46 1.695 17.
4 0.74403 0.472 I 0.351331. 4.30 13.73 0.014
5 n 10.045 14 flfl7518 ~5.28 12.94 0.150
6 0.74403 6.773 m -2.01 2.99 0. )14
7 0.<+..:1 .ll10 8.942 l3.o..: -2.68 3.07 0. )02
39.22 14.33
!NEUTRAL AXIS-Cy: 4.768 IN. lz-z---: . 53.55 INA4 f
I
!NEUTRAL AXIS·Cy': 6.261 IN. .Sz-z: 8.55 INA3 I d4
" :
I d6
~ Y6: < d5
!
·' ~ c 3 .: i\ '(li HG: ·:!'( ;-., . i :
IY DIMENSION = 12.5226 IN.
iz DIMENSION = 1.821749 IN. D=d7 ;c ::~r? ~(4)·.,·-l{6 ~ IW' J?:.L_.,_y IY SHEAR AREA = 4.147 SQ-IN.---------U.< ..
iz SHEAR AREA = 2.194 SQ-IN. N/A z2l Y2 , ./d1 ::\.. 1 J Tz1 7
Y'
I' v• ~·v"Q' resist.. R= 29.89577 1NA4 ~: YL~ .. Z4:Z6---~~~ 18
iPAI JOB# ?n-1.'> ?~!n:s MCC SHEET No.9
SECTION PROPERTIES INTERIOR SHAPE TUNNEL=C7
WIDTH
) ITHCK. ITEM 1-------(11 ): 0.177 IN. ITEM 1--d1: 2.973 IN.
I' nvr ITEM 2-------(12): 0.177 IN. ITEM 2--d2: 5.9055 IN.
ITHCK. ITEM 3-------(13): 0.177 IN. ITEM 3--d3: 3.76 IN.
1' nv". ITEM 4-------(14): 0.177 IN. ITEM 4--d4: 1.102 IN.
11nvr ITEM 5-------(15): 0.177 IN. ITEM 5--d5: 1.772 IN.
1' Nv". ITEM 6------(16): 0 IN. ITEM 6--d6: 0 IN.
ICC A ITEM 1------------: 0.526221 IW2. Z1= 0.0885 IN. Y1= 4.0455 IN.
lAce A ITEM 2-----------: 1.045274 IW2. Z2= 2.9528 IN. Y2= 5.6205 IN.
Icc A ITEM 3-----------: 0.66552 IW2. Z3= 5.817 IN. Y3= 3.652 IN.
I".RE." ITEM 4----------: 0.195054 IN'2. Z4= 5.1775 IN. Y4= 1.8605 IN.
ICC A ITEM 5---------: 0.313644 IW2. Z5= 4.892 IN. Y5= 0.886 IN.
IACCA ITEM 6--------: 0 IN'2 . Z6= 0 IN. Y6= 0 IN.
. .,
ITEM AREA z A*Z z• A*Z'A2 Io I
1 (1,( 81 l4i 3. 9 ~·
2 '11.0 5274 l8f O.f 2 · ..
3 n illll? 0. 17 !7' -2 .. 14
•4 10.1 5054 75 )1( -1. '0
5 10.: {~ 1.534 -1.41 .... . .... ··.·.··.··· ··· ... ······.
6 0 0.000 3.48 .
,) 2.140• h) 9.55 .17 .06 .
. · ..
!NEUTRAL AXIS-Cz: · 3.478 IN. ly-y--: 14.23 1NA4 .
I NEUTRAL AXIS-Cz': · 2.428 IN •. SY·Y"··: 4.09 INA3
.. . ·, .
ITEM AREA y A*Y Y' A*Y'A2 Io I
. . . .
n 4.046 12.128827 -0.01 0.00. 0.388
11.0~ 5.621 5.87496 -1.59 2.63 0.003
0! 3.652 I'd 0.38 0.10 0.784
10.' 5054 . 1.
I o. '7889
1.92 0. 01
5 10.3 !644 0. ~ •.11 0. 182
6 0.1 J 0 ).00 o.uoo
2.745/13 11.08 6.76 1.26
!NEUTRAL AXIS-Cy: 4.034 IN. lz-z---: 8.01 JNA4 I: I NEUTRAL AXIS-Cy': 1.675 IN. Sz--z: 1.99 INA3 I I
~· • • ! d3:
d5 ::;s· \~I
d41~-~-·-1-·-·-·-" _E __ Y3 .. : i
IY -.. N/A IY DIMENSION = 8.067161 IN. -----";~~ --~~ -----~---
IZ DIMENSION = 6.955297 IN. 4v4 .i, d1 :.G:: Tz2
d2=D IY SHEAR AREA= 1.505 SQ-IN. ! "(1') IZ SHEAR AREA= 1.240 SQ-IN. I;
I' v• ~·u"~' resist .. R-0.028645 IN'4 ~ T Z1
Y'
B
)
PICEANCE FACILITIES MCC BUILDING
PAl JOB# 2033.201 · SHEET No.10
SECTION P R 0 P E R T I E S OF C H A N N E L B U T T J 0 I N T P L Y W 0 0 D = C5
CROSS SECTION WIDTH
) THCK ITEM 1-------(t1 ): 0.1574 IN. ITEM 1--d1: 1.6146 IN.
THCK ITEM 2-------(12): 0.1574 IN. ITEM 2--d2: 4.803 IN.
THCK. ITEM 3-------(!3): 0.1574 IN. ITEM 3--d3: 2.7956 IN.
THCK. ITEM 4-------(!4): 0 IN. ITEM4-d4: 0 IN.
. THCK. ITEM 5------(t5): 0 IN. ITEM 5--d5: 0 IN.
THCK. ITEM 6------(!6): 0 IN. ITEM 6--d6: 0 IN.
AREA ITEM 1------------: 0.254138 INA2. Z1= 0.0787 IN. Y1= 1.9883 IN.
AREA ITEM 2------------: 0.755992 INA2. Z2= 2.4015 IN. Y2= 2.8743 IN.
AREA ITEM 3------------: 0.440027 INA2. Z3= 4.7243 IN. Y3= 1.3978 IN.
AREA ITEM 4------------: 0 INA2. Z4= 0 IN. Y4= 0 IN.
AREA ITEM 5----------: 0 IN'2. Z5= 0 IN. Y5= 0 IN.
AREA ITEM 6---------: 0 INA2. Z6= 0 IN. Y6= 0 IN.
ITEM AREA z A*Z Z' A*Z "'2 Io I
.
1 0.254138 0.0787 0.020 ·2.62 . 1.75 . 0.001
2 0.755992 2.4015 1.816 0.30 0.07. 1.453
. 3 . 0.440027 4.7243 ·2.079 -2.03 1.80 0.001
4 0 0 0.000 2.70 0.00 0.000
5 ·o 0 0.000 2.70 0.00 0.000 .....
6 0 0 0.000 2.70 0.00 0.000. ...
1.450158 3.91 3.62 . 1.45
· .. .. · .. .
NEUTRAL AXIS-Cz: 2.699 IN. ·ly-y~--: 5.07 1NA4
NEUTRAL AXIS-Cz': 2.104 IN. Sy-y-: . 1.88 1NA3
.
ITEM· AREA y A*Y Y' A*Y'"2 Io I
1 0.254138 1.988 0.505303 0.28 0;02 0.055
2 0.755992 2.874 2.172948 -0.60 0.28 0.002
3 0.440027 1.398 0.61507 0.87 0.34 0.287
4 0 0.000 0 2.27 0.00 0.000
5 0 0.000 0 2.27 0.00 0.000
6 0 0.000 0 2.27 0.00 0.000
1.450158 3.29 0.63 0.34
NEUTRAL AXIS-Cy: 2.271 IN. lz-z--: 0.974 1NA4 i
NEUTRAL AXIS-Cy': 0.682 IN. Sz--z: 0.429 1NA3 I
' I
Z' ' I d3 '
T+=
(3) ' I
..Y.4i ' Tz3 ' .X..~ N/A Y DIMENSION = 4.542018 IN. --------------
_________ ., ___ -------q: Z DIMENSION = 5.398499 IN. 2 rrn d2=D iY SHEAR AREA = 0.694 SQ-IN. ' d1' :·U), Z SHEAR AREA = 0.756 SQ-IN. I
'
Torsional resist.. R= 0.011964 INA4 .Y.41.~ T Z1
Y'
B .
IPAI JOB# ?n-t'l .,~~IES MCC No.11
S E C T I 0 N P R 0 P E R T I E S OF C H AN N E L B U T T J 0 I N T 0 N T U N N E L = C6
WIDTH
) I' nvr ITEM 1-------(11 ); 0.1574 IN. ITEM 1--d1;
THCK. ITEM 2-------(12): 0.1574 IN. ITEM 2--d2;
ITHCK. ITEM 3-------(13); 0.1574 IN. ITEM 3--d3;
I' nvr ITEM 4-------(14 ): 0 IN. ITEM 4--d4:
[I Mvl\. ITEM 5-------(15): 0 IN. ITEM 5--d5: I' nvl\. ITEM 6--"----(16); 0 IN. ITEM 6--d6:
I""""' ITEM 1-----------: 0.254138 IN•2. Z1= 0.0787 IN. Y1=
IARI=l>. ITEM 2------------; 0.731123 IN•2. Z2= 2.3225 IN. Y2=
ll>.C>C:Ii ITEM 3----------~: 0.440027 IN•2. Z3= 4.7243 IN. Y3=
•<><=A ITEM 4---------; 0 IW2. Z4" 0 IN. Y4=
lAO<: A ITEM 5-----------; 0 IN•2. Z5= 0 IN. Y5=
'""• ITEM 6-----------; 0 IW2. Z6=: 0 IN. Y6=
ITEM
4 0 0 0.000 l 0.( ·.
5 ...... 0 0 . ·'· .... 0.000 2 .... • ··· · · ·· · i 0.( I · ·
,)
6 0 0 O.ooo . 2.E 0.0( . · 0.001 ~~~~~1.~~~~~~~~3~ .. 8~CO~~~-L~~3~.6~5~~1~ .. ~~~~~
.
!NEUTRAL AXIS-Cz: . 2.664 IN. ·
!NEUTRAL AXIS-Cz': 1.981 IN.
ITEM AREA
1.
2
3
4
6
!7
0
1.
!NEUTRAL AXIS-Cy:
!NEUTRAL AXIS-Cy':
.. )
. IY DIMENSION = lz DIMENSION =
~ SHEAR AREA=
IZ SHEAR AREA -
1.988 .
2.874
1.398
0.000
. 0.000
0.000
[2.101467
0.615(
0
0
0
3.22
2.260 IN.
0.693 IN.
Y'
0.27
-0.61
0.86
2.26
2.26
2.26
lz-z---:
Sz-z:
ly-y--:
Sy-y...;..:
0.02 .
0.28
0.33
0.00
0.0
0.0
1.62
.
. .
4.97 JNA4
1,86 INA3
0.055
0~
1.000
1.000
0.000
).34
.
0.965 1NA4 t
0.427 1NA3 :
I
Z' :
d3 !
T_j_ 0.) !
-t-:
-------------------_J __ _ d1~
'(1);
I
1.6146
4.645
2.7956
0
0
0
1.9883
2.8743
1.3978
0
0
0
I' v• ~ovo OQO resist.. R;
4.520965 IN.
5.327841 IN.
0.694 SQ-IN.
0.731 SQ-IN.
0.011759 1NA4
'
1 ~ Tz1
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
.....
Y'
PICEANCE FACILITIES MCC BUILDING
PAl JOB# 2033.201 SHEET No.12
SECTION P R 0 P E R T I E S OF B 0 T T 0 M SIDE CHANNEL=C4
CROSS SECTION WIDTH
) THCK. ITEM 1-------(!1 ): 0.177 IN. ITEM 1--d1: 1.004 IN.
THCK. ITEM 2-------(!2): 0.177 IN. ITEM 2--d2: 6.378 IN.
THCK. ITEM 3-------(!3): 0.177 IN. ITEM 3--d3: 1.713 IN.
THCK. ITEM 4-------(!4 ): 0 IN. ITEM4--d4: 0 IN.
THCK. ITEM 5------(!5): 0 IN. ITEM 5--d5: 0 IN.
THCK. ITEM 6------(!6): 0 IN. ITEM 6--d6: 0 IN.
AREA ITEM 1-----------: 0.177708 INA2. Z1= 0.0885 IN. Y1= 1.211 IN.
AREA ITEM 2------------: 1.128906 INA2. Z2= 3.189 IN. Y2= 1.8015 IN.
AREA ITEM 3------------: 0.303201 INA2. Z3= 6.2895 IN. Y3= 0.8565 IN.
AREA ITEM 4------------: 0 INA2. Z4= 0 IN. Y4= 0 IN.
AREA ITEM 5----·------: 0 INA2. Z5= 0 IN. Y5= 0 IN.
AREA ITEM 6----------: 0 INA2. Z6= 0 IN. Y6= 0 IN.
. .
ITEM AREA z . A*Z Z' A*Z'A'2 Io I
. . .
1 0.177708 0.0885 0.016 3.34 1.99 0.000 •
2 1.128906 3.189 3.600 •. 0.24 0.07 3.827
3 0.303201 6.2895 1.907 -2.86 2.48 0.001
4 0 0 . 0.000 3.43 0.00 0.000
·····-5 ... -·o ... ·o ·"·----~-·o;ooo 3:43. ·------0.00 • -o:ooo-· -----~ .. ---. --------··· '"~---" _,,._., ·-·--·--.
) •·.
6 0 0 0.000 3.43 0.00 0.000
1.609815 5.52 4.53 3.83 .
.
NEUTRAL AXIS-Cz: . 3.431 IN. ly-y....;.: 8.36 INA4
NEUTRAL AXIS-Cz': 2.947 IN. Sy-y...,-: . 2.44 1NA3
. . .
ITEM AREA y A*Y Y' A*Y'"2 ·Io I
.
1 0.177708 1.211 0.215204 0.35 0.02 0.015 .
2 1.128906 1.802 2.033724 -0.24 0.07 0.003
3 0.303201 0.857 0.259692 0.70 0.15 0.074
4 0 0.000 0 . 1.56 0.00 0.000
5 0 0.000 0 1.56 0.00 0.000
6 0 0.000 0 1.56 0.00 0.000
1.609815 2.51 0.24 0.09
NEUTRAL AXIS-Cy: 1.558 IN. lz-z---: 0.330 INA4 z ...
NEUTRAL AXIS-Cy': 0.332 IN. Sz--z: 0.211 INA3 ' ' ' Z' ' ' d3 '
T+=
(3) ' '
~· Tz3 ' x_~N/A Y DIMENSION = 3.116657 IN. --------------
_________ J ___ -------) ~ Z DIMENSION = 6.861398 IN. 2
Tz2
d2=D
Y SHEAR AREA = 0.481 SQ-IN. ' d1 '
:'( 1) ' Z SHEAR AREA = 1.129 SQ-IN. ' ' Torsional resist.. R= 0.016794 INA4 .Y4 jY2_..: Tz1
Y' B .
li>Ai'JOB # ?n't't ?~~IES MCC BUI ;,nee• No.13
S E C T I 0 N P R 0 P E R T I E S OF T 0 P C H A N N E L ON T U N N E L (C3)
WIDTH
1' nvr . ITEM 1-------(!1 ): 0.177 IN. ITEM 1--d1: 0.843 IN.
I' Hv". ITEM 2-------(!2): 0.177 IN. ITEM 2--d2: 3.937 IN.
I' """· ITEM 3-------(!3): 0.177 IN. ITEM 3--d3: 0.843 IN.
I' nvr . ITEM 4-------(!4): 0 IN. ITEM 4--d4: 0 IN.
I' Mv". ITEM 5-------(!5): 0 IN. ITEM 5--d5: 0 IN.
I' """· ITEM 6-------(16): 0 IN. ITEM 6--d6: 0 IN.
lA ""'"' ITEM 1-----------: 0.149211 INA2. Z1= 0.0885 IN. Y1= 0.4215 IN.
lAC!:: A ITEM 2---·--------: 0.696849 IN•2. Z2= 1.9685 IN. Y2= 0.9315 IN.
I""'"'" ITEM 3------------: 0.149211 IN"2. Z3= 3.8485 IN. Y3= 0.4215 IN.
IAI:)C:A ITEM 4-----------: 0 IN•2. Z4= 0 IN. Y4= 0 IN.
ITEM 5-·--·-----: 0 IN•2. Z5= 0 IN. Y5= 0 IN.
lAC<= A ITEM 6---------: 0 INA2. Z6= 0 IN. Y6= 0 IN.
I' tEA z . A*Z Z' A*Z'"2 Io I
~ . 10.149211 _1. 1.53
2 0. ).00 ·. .
3 10.149211 _-1. 6 )3 .
4 0 0 0. 1.9 )0
.. 5 .. 0 ··.·· 0 .... ···0.000 1.9 .. lO
5 ~1 0 0.000 1.97 )0 0.000.
1.95 1.05 0.90
.
NEUTRAL AXIS-Cz: 1.969 IN. ly-y--: 1.96 1NA4
· NEUTRAL AXIS-Cz': 1.969 IN. Sy"y--: 0.99 INA3
. . . .
· ITEM AREA y A*Y Y' A*Y'"2 Io . I
. .
1 11 0. !2 0.~ 0.35 0.02 0.009
2 0. 12 0~5 -0.15 0.02 0.002
3 .14 1211 0. • 0.35 0.02 0.009
4 o.ooc 0.78 0.00 0.000 .
5 o.ooc 0 0.78 0.00 0.000
6 0. 000 0 0.78 0.00 0.000
:t I 0.77 0.05 0.02
NEUTRAL AXIS-Cy: 0.779 IN. lz-z---: 0.074 INA4 z
~· A
•~c;u • rtAL AXIS-Cy': 0.241 IN. Sz-z: 0.095 JNA3 ' B :
d3 :
T (i): .
Y3 ; ' ~~~~~ ' ' ' Y DIMENSION = 1.557163 IN. ' ' Z DIMENSION = 3.937 IN. -----1--------·----~ y
d1 i.
1tGb22 d2=D Y SHEAR AREA= 0.298 SQ-IN. -w :· Z SHEAR AREA= 0.697 SQ-IN. ,, resist.. R= 0.010383 IN"4
(1 <~ Y'
Z1
I'.'Y\1 PROJECT
I'MASSOCIATES
INCORPORATED
) BY£.,~ 2;.
CHKED. BY E'C~
. .. ~·-
··'i' ..
•!.
•... ··-:·'
' l .... L
.L . , .. ..... .. •·· ; . l
'' j
;.; ... ~-!· . '" .. :·.
., ....... ..:. ""''"
.!. '
~.___)
DATE 2,kf,/P&
DATE t.-/17/6~
.•.. , . ' :~·-·
11999 Ka1y Fwy.
Suite 607
Houston, TX 77079
6660 Riverside Drive
Suite 300
Metairie. lA 70003
SUBJECT ,Ptc:A£1'7,<la!. %~€.'7-> SHEET No._,/'-1{-'---~--0F ___ _
_.:__11~C..::.C=---.,8,=(,-"'!):_":::C7'-----JOB NO. 2-C>z~/
~ -t·
~--· I
i.3' ·-· -· ____ _,_ ___ ,_ , ... ·-
·. i .. :. ..
··'.
. ....
...L. ·. -~.
'··-i
·:···· -:-
; .
' .... -~.
•.··· -· J. ••
.. L.
..... ; -· -i'
. --~
\.
I"'Y\IPROJ ECT
I'M ASSOCIATES
INCORPORATED
11999 Katy Fwy.
Suite 607
Houston, lX 77079
6660 Riverside Drive
Suite 300
Metairie, LA 70003
BY~-:;?,
CHKED.BY f!CM
DATE ;rZ)'~p,!!; SUBJECT ftctr4NO!! i&>AC:t "-~''/ SHEET NO. I '!f3i> OF_:_ __
.DATE._,.b'-'' f~t..LJ""-f..,(,"'<g-_ __LM~C;_;,C,_· _e>~L-::_P~'G:__ ___ JoBNO. 2 (7 ;3~. 2. P)
L.
..
.
' ~-...
!'
f. ..... :
, ....
-~<. . --~~·-··-~····-•
,.;.
' .. ·)---. , ... , ..
;
•••• ..!.
' ···.··r··+
! ..... ,;.. .... --1-·. -t-....
. -----·--------' ·······~-------
! ·t·
________ ..
-:-...... :· . .;..
'\··-
. ?/<> ·. -. : f~
·.)'
--~--·r.
'
' ' . ···-!·' ... j, . -· .
... j
I . _;...: --+
.• !.<' . ''] __ l'.
' --~ -... ,
' '
.. ...,_ ..
... __ , __ _
N~A·
··:.··)-:'''
,.) .
.. ;.: ...
' ~-:.•.
' •. • • •. , ....... ·:·· ·, ..i, •
,. ··r . . ....•...........
. ! I
--~
.-· , __ •... ;. --·· ' ··-i
i
..) .. . .. ~-··'·· .. -~
I ~-·····+·. :.. ... :t
.. ' ...... :
~-. --. .. c..-.. t ... i . ....
.. .• r . ... • ..
···.-
.... < ..
\.
r:Y\IPROJECT
1M ASSOCIATES •••••••••••••••••••
} svMtJ,
CHKED.BY ee.4"1_ DATE 2h,bf2
DATE ~I p{6&
. --<···. ------~ ..
, ... +-. --~-'
.. : ....... '
' "'-.·! ... ;.
:---··· ·;·:· ·.;-...... .. :.
.;.
:--, .. -· '···. ·--i-.. , -~ ......
.... ·----.. ,.
. ; .... ·•····
' ; -· . t· " -~ -..
·-r-··· i ..
•. ..!... •• , __ -·--,, .
i
!
. ' . ~ --·
·.-. -~ ·:--T···
i. "i"'" ., -----~-'-,, ' '· ,.
·I.·-· ,
.. •.f·.
: ---~-
J ..
!
··'~--·
. ;, : . ; ..• --~--
..: ....... ,.. ... : ··;---
,,_.,,_;...,,
'''!"""'"''''.
• " !--
'
11999 Katy Fwy.
Suite 607
Houston, 1X 77079
. .....
~+-
._.
l .
.i ...
.4--,,,,;,. .
.. .. '1-
' .i ..
' ' I
.... -. '
' '
' .. -···
. :.:: ----+··.
-., ~ -
6660 Riverside Drive
Su~e 300
Metairie, LA 70003
-;. .
' . -
l.
--...
.. , .
.I
' ···; .• l. .. '
i "· .,
: ·;·
"!'
~ ...
.. ' ' ,.;, .•.
·····)
.. i.:
-\-.
--!
l:l\IPROJ ECT
IMASSOCIATES
INCORPORATED
BY kic J.
CHKED:BY. 8CPf
' .....
---~~--~--;.
. :-
DATE 2/!?J/&f!:>
DATE (# {17!08
.. ~ ...
... -!
;
:-
.. ;
.... ;-..
... ;.,-.: ...
. i
-;~-.-... , ..
·---..i-..
·;
i
!
T
. .. •rf·· •. ':·:.
... :.. . ~, .
•• -·>· .• .-i ... ·-.4;--.. -·.,
.. ·•· +··· ---~ .
. \• . -r.
..... : ... : "'-;.
·' ... c! •.. , ... .: ··-···· ... ! ...
..
•·\
11999 Kaly Fwy.
Suite 607
Houston, 1X 77079
6660 Riverside Drive
Suite 300
Metairie, LA 70003
SUBJECT J?/C1ii'1AIC:£ ;t:604ey'sHE8ND.~fLTe-----OF __ _
. f{C,C, f:?J.-Q~ JOBN0.~2~0~3c;;~cc_'2~t?~/!_ ___ _
,),
:rJtJre~ SZ/4~ " -. . . . , ........ ..
. '<Z2 TVJ}I.If!=l..;
·,
·--~·-·
_,. -~ ; .. ,_. .. ·;
--;
.l. •.
' ~--.• ~--,J. .
.i
.. -~---
. •.••. .! • ----~
... (, -----·-·, ....... i .... .
..,.. ....... ·.' ..
____ ·_:. .•.. ~-.;_ ___________ ~----·------------,.--.------' ____ _:_ __ ,
CY\IPROJECT
fMiASSOCIATES
INCORPORATED
~ BY~/;, ::7.
CHKED.BY £2./WL•
~.
·lA· <)
IS\
' 'IJ)
. '---)
' )
.,.
~
if\
t.i
/
..
N
iii ~.
lr
11999 ka1y Fwy.
Suite 607
Houston. TX }7079
~.s??-"1
J/,'/0"16'1 " .y, 7k'l.y P72.
tz,:;~~ j.&-~1·
" -~?!
C>) . s,t.l W ' 1 ·':' .,
. ' ~ . . ~ (5J .'}. .
~) -p::; '1:z;t5~r ~ . 1/ ·~
' . ·~
.Ct) · .t:.. M77/ 11
.
o~tJBBti1 ··· i .::2,w ' ~ t .
flliA 2'/h a!
91
~I . ' ($ J,
,.,
§
6660 Riverside Drive
Suite 300
Metairie, lA 70003
SHEET NO. I 13 OF __ _
JOB No, .J9f3 2 ~2.0 J
•
. f)c7&>12. .s-t fL
[!JP~ 11'1~
cR {2lt:.ciA2.. e?'l"t.)
0\IPROJECT
1M ASSOCIATES
INCORPORATED
'• BY 4-/:, -:7.
i CHKED. BY 8CA1
DATE 2j;?z/oe
DATE ~{f7f6i
· ... ___ _..
... ,
.J
. . ~--.... -~--; ..... ~~-~ ;_ ... ~.:,----+. . . ' . '--i-
-J. • .. {.. .. ) .
i
}
. . ..i _ ... j.
' ' ._J....J._L_
t ' •• \'
!
---.. ~-.;.... • ....J. ••• ·.
!''''. . -T· ... ./ ..
.. .. ;. : : -·: . . '·-.... ··-r .. -·-·:-· .. i . -!-.
; ............ . r ··-~; -·-· -: ..
r··.·· . . .. , .• . .
l
. ~ : . i"' .. !-. <.-..... _ ....
' I .. .l.. ' . . . i·--~---;-.---l··---~-~----~
. +---.. --.... ·t-· . --~--···! L..
'
; i ·---·· , ___ . --:-..... -
~----;..--·.;•
~-... . i . . ~---.... , .
' ... , !" . -+-·-: . -j---! .I
-.i. i· . -; ____ -+ -· .... , ' .. ,.
··;·
.. : ...
. ,.:.,... _____ ·-
):
~-i .. ~-
.
~-
···'
11999 Kafy Fwy.
Suite 607
Houston. TX 77079
6660 Riverside Drive
Suite 300
Metairie. lA 70003
SUBJECT /?1:.4!#<1 cc, 'f'=AC-fL-4.-rll!;> SHEET NO. / "f OF __ _
_c_M~C...~C..~'i?=J.,D~eoL_ ____ JOB NO. 2§7~ f2~2.t0 J
...... , .. r
+· ' . .. ]
. (
'
···+··
' . ·;·
' !
... ·.
:Ooo./2.. .. .kfL
; r;j;p.i:Wn trl~
cl/~ ~).
. . .. --.
... ;.{ .
.• ; .... 1
!
·---~-
.: ..
~---~--
•. J.
---..:--
, ..
.\ .....
... i.
-.. .L
. . .;
·-\.·-
\
'
. J. ~A\G-Fie-L.D c..ounTY Gill
:5£1"51"\IC... Q,jj;.ULA?\LDI'-IJ> U,-{o-06 .. it-~~W'?
(oyz.. 'i>"ito-E..L.. Pl'l-li.O-t=A6 ';S-"'f\2--VC:t\JC....E.... /::>IYI/..-,'v"i:....--<?'\ort--'}1 &AlZ--F'I£1..-D c.JU nt:)" .. ce;
~ !
i
(Pf-:-12... :r:..J:>~· 2003; AL-LUVIA\....., Nof..)--;Sf)..)4Mp J ' '
~~l?MIC. 'Soli... Sr1e.. ~ "' t::.
iff:12.-:J)SC.. '?~C. \~\Z?·'l.= ftrlD <?~t:.Cl"l'lAl---A.U..f:.\L~ATIOYI S;, £:-, '7JI
' : Ss FI'Ul~"~ Tft'f.>L-i-y~l?(•} \toi2-Cfi.l!liiZ:AL-~1'1-12-Flu..t> couVtTY =-o.4'L
i S i. F-1WvVI \ AI:>L-l:-~~_\FOI'L C£Yill'lAL ~ ~f'Jf: .. L.'D CO 1.JYl i'( : 0, 06'2.
i
!reJ<,. :Lr?C.. <S£C.. llPft;.i,Z.; fiND '5tv~._, ~ 'Dm 1
l r-a.. -r--,roiv"' -to-._ b '~.-...,
;:"'-?»..:: 'i' .-L 8 i Sm?" Fo-· 'S? = '2,,? • OAQ. .. :: t.os
i<:::.rl'\1 = F'v ·~, = ~.'5• o.OS?: O.J'\'2? l
! " l
--"···· _j6p$:: .... ~~~-Sv.n!> .... E .. ~--·-JP?::: .... ~!~~-~---.............................................. __ ................ J
i 5v 1 ~ z..;? • Sm 1 -:: "2-/3 • 0,1'12-S : 0.1 '2--~} .. i
)
)
! .. .. . I l0o.-r~~~ -::: 'S'V"> = 0,/0q, . {vK ~;vtcec fv_,.bj)L~.,.Q_ fe.r 1'oa ~ 'h....ri ·-w ?Jwl~
' i . ~crwn IW't.'$. t\ 1H7,L\:
1
t f~ '111~\-f.. llel~'"-3.1 ?.'EISWIIC-~111111\ ~cP,OP/.:: . t> . i P~ · 'lb.l;L:t.... lfe\ll'-?.2. ?!>J.~IIlllc.... 'De-".;>1411' c,J>f(f:.-40"-Y,; -~
' if'f-E... ~\ION IIRJ1.S.l:
' . I t:: = L ']. .... w., 1f w-J---~ 1.1 1(-o.~'\j w ~ o. 105" vr
~ 8
!' lJ\!Stvvc::tut~-~-=-'1,?:£1.:11"-;-lli.J-10'<:1.
W Prf'l vttt/v~ "' 2.0 oOO ~
UJ 1vt.& ::: B ~f foO {¥ . -
; #-c.. "' 0 .lOS ;l! ;:lS/-1 ~o<l-1-= 'JO l.J-1 ·
}
)
STRUCTURAL DESIGN
304
Note:
. Region 1 I& shown enlarged In Figure 1615{3).
• Region 2 Is shown enlarged in Figure 1615(5), ••
FIGURE1615(1) 5s ::. 0.'-f'2. -(by-§lt!ZF/£1-D (;vt1TY , )
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES
OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B
20031NTERNATIONAL BUILDING CODE®
)
I
)
STRUCTURAL DESIGN
306
DISCUSSION
~vclocol'ordesip ... u..~ ~Jita--::d:O.tt>:tho""'!'~IIWnu
NI!IDtl'lilt>dlriB. .
11
=mop.*'<ildb:lll:llllllllaadoilioall<klllll
. """""""'
Note: ·Region 1 ts shown enlarged In Agure 1615(4).
·Repton 2ls shown enlarged In Figure 1615(6).
,.,.
FIGURE1515(2) S:l. = 0.0'02. .fi>..-§~t~Ftt:.LP Cb£/n<Y
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CoN I ERMINoOs ON II ED S IAJ Es
OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B
2003INTERNATIONAL BUILDING CODE®
)
)
)
. )
.·-·----
)
. fclz.-EO\.! I r ti\'\U\ I .6.nC,H OtlA&-;C-
1
,.
' !
I
I
I
I' .i
I I
I -J'-_ _..(t::
I -<!'"< I )'
d ~I t
ft:-F::-_A--sc..t:-'7-t:JS :
'\Ai3LX 13. t,.-\ <f:;e-~"'"'''c Coe{!(,'c ,·tw---+s
I'Y\<..c-~ ~ -e-\e {_.. C.OV"'· eo VI-s-·r-t: 5
I
I
I
I
I
I
)
l-OAD !2-E<S>\S'rt::D f3Y: 5lX-.6.NCJ..lo~ JSoqs >i *'-f'/tf
;---'F=ll\---loA'P ANc.Mol'--BoL-T :: 1 J /1/ f5# ..;-(p. ; ~OCJO~Bd-T
;F '5 ::: al/of.II.Drr;t..t. STfl..t~
o.dv;.J '5-frt?> ir>cJwJ,'n 1 {r.·.::t.'o '1.
::: J; .t; l/1-1:1-
~/l~+fi;.
fttT£~(t.. [){;;5Jt::.1{ FOf(.. DAf>f..lll-fJtAC£ nne-HtJt::. t:pif:
I i
w1~r!
I
I
TFZ-Y bjfJLVI+HfC'E-V 3J4-il,jl4lJcHOtz 6oJ.-7 wifh-5 5t" f'/111 t:..ntbt:PI'1'i-11i
/A.S.E. IJ3!R -:.tr.e./ t>r hcffer (31P Jt.Gi y·'dd GtrM~1fA) ,
. \
I
Ft. =I 'f,J r'ic.' 7;;/~?w~tbfe r" 3JL;.'' t?>ot--r: $'{/00 ;JA..
rv~) = 'Utr J<.$t. fv ,.I/...,~1! f.w-3/lf'' fXlcr :: Lf'-1 oo P""'. (>JiiJ!e war)
f~ •'ntiuPc't-.) {r t'r::tiof'\ :: _.Lf=t.f 00:#" i.ft/00-:# ;: Lf,~;<. !f.::
~Jt?.;~ ;Ot1>#
m~FO/Z.E. 8 . I
use: HI/XI B.UJ~!)off f<e-T.C. 3)fu X/0 11 P.f3:. ?¥L.f#P 173-b or6f:rrte-uj 'S~''pun t:motq.
:CIMC 40'x8'x9'6" TRITON
Technical Specification
For
40' x 8' x 9'6" ISO Type
Dry Cargo Steel Container
(TRITON)
Specification No.
Drawing No.
Date of Issue
This specification is used in all factories of
S084A45G1
084A45G1G
Feb.4,2004
China International Marine Containers (Group) Ltd.
Including: 1.
2.
3.
4.
5.
6.
7.
8.
9.
Issue: 04A-01
Shenzhen Southern CIMC Containers Manufacture Co., Ltd.
Nantong CIMC-Smooth Sail Container Co., Ltd.
Dalian CJMC Container Manufacturing Co., Ltd.
Xinhui CIMC Container Co., Ltd.
Shanghai CIMC Fareast Container Co., Ltd.
Tianjin CIMC North Ocean Container Co., Ltd.
Qingdao CIMC Container Manufacture Co., Ltd.
Shanghai CIMC Baowell Industries Co., Ltd.
Zhangzhou China Merchants Containers Co., Ltd.
Page: 1 of20
This file Is strictly confidential and privileged. It is Intended only for the use of the intended recipient. If you are
not the intended recipient, please notify us immediately by e~mail at hsd@clmc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
Scope
This specification covers design, construction, materials, testing, inspection &
prototype container. The container is built in accordance with the requirements of
I.S.O. 1AAA Type steel dry freight containers by China International Marine
Containers (Group) Limited (CIMC).
This Specification is for the purposes of information only and should not be copied
without permission of CIMC.
Contents
1. GENERAL ......................................................................................... ... .. 3
2. APPROVAL AND CERTIFICATES ........... .................................. ... ... ..... 3
3. HANDLING ................................................................................ ... ... ... .... 4
4. TRANSPORTATION .................................................................. ... ... ....... 4
5. DIMENSIONS AND RATINGS............................................................... 5
6. GENERAL CONSTRUCTION ...................................................... ... .. . .. .. 6
7. PRESERVATION ........................................................................... ... ... .. 13
8. MARKINGS ................................................................................... .. . .... .. 14
9. TESTING AND INSPECTION .............. .............................................. ... 15
10. DOCUMENTS SUBMISSION............................................................... 18
11. GUARANTEE .............................................................. ........................... 18
12. MATERIALS.......................................................................................... 18
Page: 2 of20
This file Is strictly confidential and privileged. It is intended only for the use of the intended recipient. If you are
not the Intended recipient, please notify us immediately by ewmail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
40'x8'x9'6" TRITON
1. General
1.1 Operational Environment
The container will be designed and constructed for the transportation of general
cargo on sea ( above or under deck ) and on land (road or rail) throughout the
world, and will be suitable for the environmental conditions imposed by those
modes of transport. All materials used in the construction will be able to
withstand extreme temperature ranging from -30°C(-22°F) to 70°C(158°F)
without effect on container's strength and watertightness.
1.2 Standards • Regulations and Rules
1.2.1 Standards and Regulations
Containers shall comply with following in their latest editions:
1) I.S.O.frC-1 04
668 -Series 1 freight containers-Classification, external dimensions and
ratings
-Coding, identification and marking for freight containers 6346
1161
1496/1
-Specification of corner fittings for series 1 freight containers
-Specification and testing of series 1 freight containers.
Part 1 : General cargo containers for general purposes
830 -Freight containers-Terminology.
6359 -Freight containers-Consolidated data plate
2)The International Union of Railway ( UIC) code 592 OR.
3)The Customs Convention on the International Transport of Goods ( T.I.R. ).
4)The International Convention for Safe Containers ( CSC ).
5)Transportation Cargo Containers and Unit Loads Quarantine Aspects and
Procedures by Commonwealth of Australia Department of Health. ( T.C.T. )
1.2.2 To satisfy the requirements of Rules of B.V or G.L. Classification.
2. Approval and Certificates
2.1 Classification Certificate
All the containers shall be certified for design type and individually inspected by
Classification Society.
2.2 Production Certificate
The Production Certificate of series containers to be issued by the
Classification Society. The Society's seal shall be provided.
2.3 T.C.T Certificate
Certificate of timber treatment to the requirement of Australia Department of
Health.
2.4 Customs Certificate IT.I.R.I
Customs' Approval and Certificate to be issued by Customs.
Page: 3 of20
This file Is strictly confidential and privileged. It Is intended only for the use of the Intended recipient tf you are
not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
~CI.MC 40'x8'x9'6" TRITON
2.5 U.I.C. regjs!ra!jon
All the containers will be registered & comply with the International Union of
Railways.
2.6 C.S.C. Certificate
All the containers will be certified and cornply with the requirements of the
International Convention for Safe Containers.
3. Handling
The container shall be constructed to be capable of being handled without any
permanent deformation which will render it unsuitable for use or any other
abnormality during the following conditions:
1) Lifting, full or ernpty, at the top corner fittings vertically by means of
spreaders fitted with hooks, shackles or twistlocks.
2) Lifting, full or empty, at the bottom corner fittings using slings with
appropriate terminal fittings at slings angle of thirty (30°) degrees to
horizontal.
3) Side lifting from two top corner fittings when fully laden. (The reaction force
. will be supported by the corner posts only).
4c Transportation
The container shall be constructed to be suitable for transportation for following
modes without any permanent deformation which will render the container
unsuitable to use or any other abnormality.
4.1 Marine:
-In the ship cell guides: Eight ( 8 ) high stacked base on Max. gross weight
30,480 kg ( 97,200 kg stacking capacity I post).
-On the deck : Four (4) high stacked and secured by suitable vertical an
diagonal wire lashings.
4.2 Road -On flat bed or skeletal chassis:
Secured by twistlocks or the equivalent at the four bottom corner fittings.
4.3 Rail -On the flat cars or special container car:
Secured by twistlocks or the equivalent at the four bottom corner fittings.
4.4 One door off operation:
Five (5) high stacked on the deck base on Max. gross weight 30,480 kg.
Page: 4 of20
This file is strictly confidential and privileged. It Is Intended only for the use of the Intended recipient If you are
not the intended recipient. please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, fo!Ward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC
5 . Dimensions and Ratings
5.1 Dimension
a. External Dimensions
Length .......... ..
Width .......... ..
Height .......... ..
b. Internal Dimensions
Length .......... ..
Width .......... ..
Height .......... ..
No part of the container
mentioned above.
12,192 ( 0,-10) mm
2.438 ( 0,-5) mm
2,896 ( 0,-5) mm
12,032 ( 0,-10) mm
2,352 ( 0,-5 ) mm
2,698 ( 0,-5) mm
will protrude beyond
40'x8'x9'6" TRITON
40' (0,-3/8")
8' (0,-3/16")
9'6" (0,-3/16")
39'5-45/64" (0,-3/8")
7'8-19/32" (0,-3116")
8'1 0-7 /32" (0,-3/16")
the external dimensions
Maximum allowable difference between two diagonals on any one of the
following surface are as follow:
Roof, Bottom and Side Diagonals 19 mm.
Front and .Rear Diagonals ...................... 10 mm.
5.2 poor Open jog
Width
Height
2,340 ( 0,-5) mm
2,585 ( 0,-5) mm
7'8-1/8" (0,-3/16")
8'5-49/64" (0,-3/16")
5.3 Gooseneck lynne!
Length ........... . 3,315 mm 10'10-1/2"
3'4-13/32" (+1/8",0)
4-23/32" (0,-1/8")
Width ........... .
Height ............ .
1 ,029 ( +3,0 ) mm
120 ( 0,-3) mm
5.4 Inside Cubic Capacity
76.4 cu.m
5.5 Rating
Maximum Gross Weight ............. ..
Maximum Payload .............. ..
Tare Weight ( ±2%) ................ .
Maximum Test Gross Weight
5.6 Corner Protrusions
2,700 cu.ft
30,480 kg
26,640 kg
3,840 kg
32,500kg
67,200 lbs
58,730 lbs
8,470 lbs
71,650 !bs
1) The upper faces of the top corner fittings will protrude above the highest level
of the roof construction except corner plate by 6 mrn.
2) For the containers under empty condition the lower faces of the
crossmembers in their bases including their end transverse members shall be
on a plane located at 17 mm above the lower faces of the bottom corner
fittings.
3) The outer side faces of the corner fittings will protrude from the outside faces
of the corner post by minimum 3 mrn. The outer side faces of the corner
fittings will protrude from the outside faces of the side walls by nominal 7 mm
and from the outside faces of the end wall by 7.4 mm.
Page: 5 of20
This file is strictly confidential and privileged. It is intended only for the use of the Intended recipient. tf you are
not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, fmward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
:CIMC 40'x8'x9'6" TRITON
4) For the containers under the condition such as the load equal to 1.8R-T
uniformly distributed over the floor, no part of the base of the container will
deflect more than 6 mm below the lower faces of the bottom corner fittings.
6. Construction
6.1 General
The container will be constructed with steel frame, fully vertically corrugated
steel side and end walls, die-stamped corrugated steel roof, wooden flooring,
corrugated double hinged doors and ISO corner fittings at eight corners. All
steelwork will be built up by means of automatic and semi-automatic C02 gas
arc welding.
All exterior welds including that on base structure will be continuous to insure
watertightness, all the welds, even spots, will have full penetration without
undercutting or porosity.
6.1.1 Welding
All welding wire and other electrodes are to be approved by one or more of the
recognized classification societies.
All welding equipment shall be maintained in good working order to produce
acceptable weld quality. All workers operating welding machines shall be
skillful and knowledgeable of proper welding techniques and shall avoid
excessive weld speed, excessive current, and excessive ventilation causing
loss of shielding gas.
All welding is to be skillfully and accurately performed by a shielded arc
process and shall exhibit even beads, good shape and full penetration
(100%)and shall not exhibit signs of cracking, porosity, spatter, burn through,
undercutting or blow holes upon completion.
Welding back bead shall exhibit full penetration. Back bead should be a
continuous, smooth round shape free of skips, jagged edges or voids.
All roof and side panel butt welds shall have full (1 00%) penetration with a
smooth, even, round shaped backbead that is free of any jagged, flared, or
mushroomed areas.
All joints to be welded shall be spaced a minimum of 2mm apart except for thin
panels which shall be spaced not greater than the material thickness.
All stitch welds shall be a minimum of 25 mm long. If required, any manual
welding which is not performed by a shielded gas process shall be
accomplished with low hydrogen flux-coated welding electrodes.
Inspections will be performed after each stage of welding to identify any weld
defects. Adequate lighting shall be provided at each station to complete these
inspections. Defect repair and weld spatter removal will be performed at each
station and not left for the final touch up area. Chisels should be used to
remove spatter and high spots. Weld defect repairs shall be performed by
shielded metal arc or gas metal arc welding process and shall be skillfully
done.
Page: 6 of20
This file is strictly confidential and privileged. It is Intended only for the use of the intended recipient If you are
not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
All welds will be inspected prior to final blast in an effort to minimize post blast
touch up. Grinding shall be performed on obvious weld defects such as rough
or jagged areas and shall produce a smooth round weld bead. Grinding shall
not be excessive to the point of removing the weld bead or damaging the base
metal adjacent to the weld.
6.2 Corner Eittjngs
Corner fittings will be designed in accordance with IS0/1161 standard, and
manufactured at the workshops approved by the classification society.
6.3 Base Frame
The base frame will be composed of two ( 2 ) bottom side rails, a number of
crossmembers and gooseneck tunnel, which are welded together as a
sub-assembly.
6.3.1 Bottom Side Rail
Each bottom side rail is built of a steel pressing made in one piece. The bottom
flange faces outward for ease of repair and corrosion resistance.
Qty. Two ( 2 ).
Shape Channel section .
Dimension 162 x 48 x 30 x 4.5 mm.
6.3.2 Crossmember
There are two type of crossmembers in the base assembly. Normal
crossmembers with a 45 mm top flange and joint crossmembers with a 75 mm
top flange. The units with the 75 mm top flange with three 4.0 mm thick vertical
webs are located under the plywood floor butt joints.
Shape " C " section
Normal 122 x 45 x 45 x 4.0 mm , Qty. 25
Joint 122x75x45x4.0mm, Qty. 3
6.3.3 Gooseneck Tunnel
The gooseneck tunnel consists of a one piece pressed hat section tunnel plate,
a number of pressed channel section tunnel bows, one open section rear
bolster with four 4.0 mm thick reinforcement gussets and tunnel outriggers. The
gooseneck tunnel is designed according to ISO standard :
a) Tunnel plate thickness : 4.0 mm Qty. : 1
b) Tunnel bow thickness : 4.5 mm Qty. : 12
c) Bolster thickness: 4.5 mm Qty. : 1
d) Outriggers-"C" section: 118x75x45x4.0 mm, Qty. : 1/each side
118x45x45x4.0 mm, Qty.: 7/each side
PEige: 7 of20
This file is strictly confidential and privileged. It is intended only for the use of the intended recipient If you are
not the intended recipient, please notify us immediately by e-mail at hsd@cilnc·.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
6.3.4 Reinforcement
" L " shaped reinforcement plates fully welded to the outside face of the bottom
rail web at each ends of the rail.
Dimension : 300 x 120 x 4.5 mm
6.4 Front End
The front end will be composed of corrugated end wall and front end frame,
which are welded together as a sub-assembly.
6.4.1 Front End Wall
The front end wall is composed of two vertically corrugated panels, butt welded,
with automatic welding equipment, into a single unit.
Thickness: 2.0 mm
Corrugation dimension-Outer face :
Inner face:
Pitch:
6.4.2 Front End Frame
110 mm
104 mm
250mm
Depth : 45.6 mm
Slope: 18 mm
The front end frame will be composed of one front sill, two corner posts, one
front header and four corner castings.
6.4.2.1 Front Sill
The front sill consists of a square tube upper and open style front.
Gooseneck tunnel gusset : 6.0 mm Thk. Qty.: 2
Square tube : 60 x 60 x 3.0 mm Qty.: 1
Flat strips : 4.0 mm Thk. Qty.: 2
Triangular shaped reinforcements : 9.0 mm Thk. Qty.: 2
6.4.2.2 Corner Post
Each corner post is made of a 6 mm thick steel pressing to ensure the suitable
strength, light weight and easy maintenance.
6.4.2.3 Front Header
The front header is constructed of one, 4.5 mm thick, " Z " pressed steel plate
with reinforcements at each top corner. The header extends inward 366 mm
from the front face of the corner casting and covers the full width of the roof
from top rail to top rail.
6.5 Rear End
Rear end is composed of Rear End Frame which consists of one door sill, two
corner posts, one rear header with header plate and four corner fittings, which
are welded together as a sub-assembly, and Door Systems with locking
devices.
Page: 8 of20
This file Is strictly confidential and privileged. It is intended only for the use of the intended recipient. If you are
not the intended recipient, please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, foiWard or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
~CIMC 40.'x8'x9'6" TRITON
6.5.1 Door Sill
The door sill is built of a special channel section steel pressing with internal
gussets at the back of each cam keeper. The upper face of the sill has a slope
for better drainage and the highest part is on the same level as the upper face
of the wooden floor.
a) Door sill : 4.5 mm thick
: 4.0 mm thick
Slope : 1:1 0 approx.
b) Stiffener gussets Qty.: 4 Pes.
6.5.2 Corner Post
Each corner post is constructed from an inner part of channel shaped hot-rolled
section steel and an outer part, welded together to form a hollow section to
ensure width of the door opening and suitable strength against the stacking and
racking force. Four ( 4 ) sets of hinge lugs are welded to each outer corner
post.
Inner part
Outer part
6.5.3 Door Header
113x40x12mm
6.0 mm thick.
The door header is constructed from a lower " U " shaped steel pressing, with
internal stiffener gussets located behind cam keepers, and an upper steel
pressing (header plate). They are welded together to form a highly rigid box
section.
Rear header
Header plate
Gussets
6.5.4 Door Systems
4.0 mm thick
3.0 mm thick
4.0 mm thick Qty.: 4 Pes.
The doors consist of two leaves. Each leaf consists of a door panel,
continuously welded into a frame, a pair of locking rods with mounting brackets
and handles, four hinge blades and pins, sealing gaskets with retainers, and
"tie back" retaining lines. The doors will be attached to the rear frame by the
hinge pins and will be capable of opening through an arc of about 270 degrees.
Door panel and frame welding will be accomplished with mixed gas welding
equipment only.
6.5.4.1 Door Leaves
Each door leaf consists of a panel and a door frame. The door frame consists of
vertical ( inner & outer ) and horizontal ( upper & lower ) members. The door
panel and door frame (including square tube end plate) are welded together
with mixed gas welding equipment, and form the rectangular door leaves.
The doors are so arranged that the left leaf can't be opened without
displacement of the right leaf.
a. Door Panel : With 5 corrugations
Depth 36 Mm
Width : 72 mm
Slope
Panel thickness
68mm
2.0mm
Page: 9 of20
This file Is strictly confidential and privileged. It is Intended only for the use of the Intended recipient. tf you are
not the intended recipient, please notify us Immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
b. Door Frame
1) Horizontal door member: 150 x 50 x 3.0 mm, channel section.
2) Vertical door member: 1 00x50x3.2 mm RHS (outer & inner)
6.5.4.2 Hinges and Pins
Four forged hinges, providing with bushed hole, are welded to each door leaf.
Each door is installed by hinge pins, washers and bushings.
Washer : Stainless steel, under the bottom of hinge
Bushing : Self-lubricating synthetic
Pin : Stainless steel.
6.5.4.3 Locking Devices
Two min. 3mm thickness steel tube locking rods with handles, cam ends, and
mounting brackets are attached to each door leaf. They are fastened to the
door with standard bolts I nuts as well as six huck bolts for TIR security
purposes. The bars are suspended in the mounting brackets with synthetic,
self-lubricating bushings.
An EPDM shim will be inserted between the mounting brackets and the door for
abrasion protection, the shim will be a minimum of 3 mm larger in
circumference than the brackets.
Cam keepers are welded to the door header and sill to receive the cams
mounted on the lock rods.
a)Locking device type : Saejin SJ-66M or HH-EA with secura cam & keeper.
b) Locking rod treatment: Hot-Dipped galvanized to BS729 {75J..t)
c) Cam keeper treatment : Electro zinc plated.
6.5.4.4 Door Holder and Receptacle
A door tie back, made of mixed nylon rope, is tied to the centerside locking rod
& the receptacle ( door hook ) is welded to each bottom side rail to retain the
door in the open position.
6.5.4.5 Seal Gaskets
The black door seal gaskets are E.P.D.M rubber and of a "C" type for the
bottom, "J" type for the top and side. They are attached to the door frame with
stainless steel rivets and retainer strips. The gasket is set atop a bead of
adhesive sealant.
6.6 Side Wall Assembly
6.6.1 Top Side Rails
Each side rail of right and left hand is made of square steel tube.
Rail: 60x60x3.0 mm RHS
Page: 10 of20
This file is strictly confidential and privileged. It is intended only for the use of the Intended recipient. If you are
not the intended recipient, please notify us Immediately by e~mall at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
~CIMC 40'x8'x9'6" TRITON
6.6.2 Side Walls
Each side wall will be composed of a number of sheets for the intermediate
(inner) parts and outer panels at each end of side wall, fully vertically
corrugated into trapezium section, butt welded together to form one panel by
automatic welding.
a) Inner panel
b) Outer panel
1.6 mm Thk.
2.0 mm Thk.
Qty.
Qty.
9 Pes .lEach side
2 Pcs./Each side
c) Trapezium
Outer face
Inner face
Pitch
6.7 Roof
72mm,
70mm,
278mm
Slope
Depth
68mm
36mm
The roof will be constructed by several die-stamp corrugated steel sheets with
a 5 mm upward camber at the center of each trough and corrugation, these
sheets are butt jointed together to form one panel by automatic welding.
Corrugation Shape Depth 20 mm Pitch 209 mm
Inter face : 91 mm Slope : 13.5 mm
Panel thickness
Sheets Qty.
6.7.1 Roof reinforcement plate
Outer face : 91 mm
Camber upwards
2.0mm
11 Pes.
5 mm
Four 3.0 mm thick reinforcement plates shall be mounted around four comer
fittings.
6.8 Floor
6.8.1 The Floor Boards
The floor consists of plywood. The plywood is treated with preservative
according to the latest requirement of Commonwealth Department of Health,
Australia.
Plywood thickness
Plywood moisture content
Plywood ply number
6.8.2 Arrangement and Fixing
28mm
Less than 14%
19 plies
The plywood boards are laid on the crossmember with a pre-blasted, painted,
free floating flat steel bar at the center and two pressed steel floor angles along
both side rails. The floor center rail will be installed on the finishing line after all
blasting and painting have been completed. A adhesive backed sponge tape
will be applied to the vertical flange of floor angle. The plywood boards are
tightly secured to each crossmember with countersunk self-tapping steel
screws. The heads of the floor screws are countersunk below the level of the
upper surface of the floor by 1.5 mm to 2.5 mm.
Page: II of20
This file Is strictly confidential and privileged. It Is Intended only for the use of the Intended recipient lf you are
not the intended recipient, please notify us immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person,
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
Screws
Screws' Qty.
Floor angle
Floor centre rail
M8 x 45 x <1>16 (head), Electro zinc plated
6 Pes/end row, 5 Pes/other, 3 Pes/outrigger
25x25x3 mm
50 x 4 mm, Painted with Zinc rich primer
6.9 Special Features
6.9. 1 Customs Seal Provision
Customs seal provisions are made on each locking handle and retainer in
accordance with TIR requirements by rivets.
6.9.2 Lashing rings
a. Lashing rings are welded to each bottom and top side rail at corresponding
recessed area of side wall.
Lashing rods Qty./ bottom or top side rail : 10, Total : 40
b. Lashing rods are welded on each rear corner post slot & on each front corner
post.
Lashing rods Qty./front corner post : 5, Total : 10
Lashing rods Qty./rear corner post : 5, Total : 1 0
c. Capabilities of pull load of every lashing point are as following:
Lashing rings on the side rails : 2,000 kg/each
Lashing rods on the corner posts : 1,500 kg/each
d. Treatment of lashing ring I bar : Electro zinc plated
6.9.3 Sill Cut-Outs
200 x 75 x 9 mm channel section steel recesses are provided in each ends of
rear sill adjacent to the bottom fitting to prevent damage due to any twistlock
misalignment.
6.9.4 Ventilators
Two ventilators with EPDM seal gasket are supplied on each end side wall,
fixed by three aluminum huck-bolts, the sealant is to be applied on the edges
except the bottom side of the ventilator, after the completion of paint. The
sealant is "Brown Chloroprene".
Ventilator material
Ventilator Qty.
ABS Resin Labyrinth Type.
2/side wall , Total: 4
Page: 12 of20
This file is strictly confidential and privileged. It is intended only for the use of the intended recipient If you are
not the Intended recipient, please notify us Immediately by e~mall at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
:CIMC 40'x8'x9'6" TRITON
7. Preservation
7.1 Surface Preparation of the Steelwork
1) All steel surfaces will be degreased and shot blasted to Swedish Standard
SA 2.5 to obtain a surface roughness of 25 to 45 11· This will result in the
removal of all rust, dirt, mill scale and other contaminants. The surface
profile of all blasted surface will comply with Rugo Test #3, BN9a to BN10b.
Removal of all loose grit and dust shall be accomplished with clean dry
compressed air, dust cleanliness standard will comply with Hempel
standards.
2) All fasteners such as bolts/nuts, washers, self-tapping screws, which are not
mentioned in this Spec. will be electro zinc-plated to 12 11·
3) Sealant
All floor seams, perimeter, holes for securing bolts, unwelded interior joints
and other places where water may enter will be sealed.
Sealant Materials:
a. Neoprene/Chloroprene (cargo contact area )
b. Butyl ( non-cargo contact areas )
7.2 Coating
7.2.1 Prior to Assembly
All steel surfaces will be coated with primer paint immediately after being
shot-blasted (within 1 hour).
7.2.2 After Assembly
After assembly before 2nd blast, a final inspection will be performed to identify,
remove, or correct spatter, contamination, and weld defects. All weld joints will
be shot blasted to remove welding flux, spatters, burnt primer, and other
contaminates. After 2nd blast, all units will have a light check performed to
identify pinholes or weld defects. Immediately after the light leak check the units
will be coated with zinc rich primer (interval between 2nd blast and primer coat
not to exceed 1 hour
Page: 13 of20
This file Is strictly confidential and privileged. It is intended only for the use of the intended recipient If you are
not the Intended recipient, please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
7.2.3 All the surface of the assembled container will have coating system as follows:
Process Paint Name OFT ( ll)
Exterior Surface Zinc rich epoxy primer 30
EPOXY primer 30
Acrylic topcoat 60
{ Colour: RAL 8004 )
Total: 120 .
Interior Surface Zinc rich epoxy primer 130
EPOXY topcoat, Colour: RAL 7035 I 50
Total: 80
Under Structure Zinc rich epoxy primer 30
Hempinol 1022-1999 I ACST8508 I 200
DCCSW /Ivan 512/ Antas 221/ Dinitrol
4941 K I Tectvl121 b
Total: 230
* The OFT decision rules in practice is 90-1 0:
For each area, and coat, less than 10% of the readings may be below the
DFT specified. No readings may be below 90% of the DFT specified.
Areas where the total DFT is more than twice the OFT specified are not
acceptable and must be redone completely.
* There are contrasting zinc primer colors for the shop primer and main primer
coatings,
7.2.4 The paint supplier shall be as per Triton approved supplier list.
7.2.5 The surface preparation, painting, and drying process will be carried out in
accordance with the approved paint vendor's instructions (" Painting
Procedures for Triton Dry Cargo Containers in CIMC Factory").
8. Markings
8.1 Lettering
The markings will be designed decal and arranged according to buyer's
requirement. The markings consist of the following contents:
1) Owner's emblems .......... according to owner's design.
2) Owner's code , serial number and check digit ( outside & inside )
3) Size and type code (outside )
4) Weight details ( on door)
5) Other marking: According to owner's requirements.
6) Material of marking : 3M Scotchcal (Cast) VS5018.
7) Supplier of marking :"New Century" , "Ocean Shine".
Page: 14 of20
This file Is strictly confidential and privileged. It is intended only for the use of the intended recipient If you are
not the lntended.reclplent, please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, fotward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
8.2 Consolidate Plate
8.2.1 The containers will bear marking plate in accordance with the requirements of
the Classification Authorities and owner such as mentioned in section 2.2 in
this specification. The plate will be permanently riveted to the specified position,
with an EPDM backing shim that is 3 mm larger in circumference than the plate,
between the door panel and the plate.
Plate material Stainless steel
Plate treatment Chemically etched & enameled
Rivets material Stainless steel
Plate thickness 0.8 mm
8.2.2 Contents of the plate:
1) Owner's plate ( name and address ) .
2) CSC approval No.
3) Customs approval No.
4) Australian wood treatment .
The engraved letters on this plate are as following :
IM : Immunization
XXXX : The name of preservative.
XXXX :The time of immunization.
5) Date of manufacture (year-engraved, month-stamped)
6) Owner's serial number (stamped)
7) Owner's model number.
9. Testing and Inspection
9.1 Proto-type Container
Proto-type container to be manufactured in accordance with this specification
and shall be tested according to procedures described in the ISO 1496/1 and
the Classification Society's requirements. The containers will be fabricated &
tested in advance of the mass production.
9.2 Container in Mass Production
9.2.1 Every container in mass production shall be manufactured under effective
quality control procedures to meet the specified standards.
One in every 100 of containers shall be tested for following items:
a) Stacking test
b) Lifting from top corner fitting test
c) Lifting from bottom corner fitting test
d) Floor test (one in every 50)
After completion, all the containers shall be subject to dimension check, door
operation check, light leakage test & production type weather-proofness test.
The containers shall be inspected by the surveyor of Classification Society and
identified by the appropriate society seal.
Page: 15 of20
This file Is strictly confidential and privileged. It is intended only for the use of the Intended recipient. If you are
not the Intended recipient, please notify us immediately by e~mall at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
:CIMC 40'x8'x9'6" TRITON
9.2.2 Each assembled corner post structure will have tension test with 15,240 kg
after welding in the construction line.
9 3 The proposed criteria table for general prototype testing·
Test No. Test Load Method
a. Stacking Internal Load: Hydraulic cylinder load to corner post through
1.8R-T top corner fittings.
Testing Load: lime duration : 5 mins .
97 ,200kg/Post
b. Lifting from Top Internal Load: Lifting vertically from top corner fittings.
Corner Fittings 2R-T lime duration : 5 mins .
c. Lifting from Internal Load: Lifting from bottom corner fitting 30 Deg. to
Bottom Corner 2R-T horizontal.
Fittings . lime duration : 5 mins .
d. Side Lifting from Internal Load: Lifting vertically from two top corner fittings.
two Top Corner 1.25R lime duration : 5 mins .
Fittings .
e. Restraint Testing Load: Hydraulic cylinder load applied to bottom side
(Longitudinal) 2R(Riside) rails in compression & then tension .
Internal Load: lime duration : 5 mins .
R-T
f. Floor Strength Truck Load: Special truck is used. .
7,260 kg Total contact area: 284 sq em,
Wheel width: 180 mm,
Wheel center distance: 760 mm
g. Wall Strength Test Load: Compressed air bag is used.
(Front & Door) 0.4 p lime duration : 5 mins.
h. SideWall Test Load: Compressed air bag is used.
Strength 0.6 p lime duration : 5 mins.
i. Roof Strength Test Load: Applied area will be the weakest place of 600
300 kg x 300 mm longitudinal & transverse.
lime duration : 5 mins .
j. Rigidity Test Force: Hydraulic cylinder will be applied to front top
(Transverse) 15,240 kg end rail & door header through top corner
(150 kn) fittings, each time pulling & pushing.
Time duration : 5 mins .
In rear end, a water tightness shall be
demonstrated while the container is under
half-racking load.
k. Rigidity Test Force: Hydraulic cylinder load will applied to side top
(Longitudinal) 7,620 kg rail through top corner fittings.
(75 kn) lime duration : 5 mins .
I. Weather Nozzle: 12.5 mm (inside dia.) I Distance: 1.5m
Proofness Pressure: 100 Kpa (1 kg/sq.cm) Speed: 100 mm/Sec.
* Note: R-Max1mum Test Gross We1ght (32,500kg)
P -Maximum Test Payload
T-Tare we1ght
*Certification by Class shall be shown on 32,500kg MGW
Page: 16 of20
This file is strictly confidential and privileged. It is Intended only for the use of the Intended recipient. ff you are
not the intended recipient, please notify us immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, fo!Ward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
:CIMC 40'x8'x9'6" TRITON
9.4 One door off operation test
The container shall be tested for one door open off operation and marked the
allowance to CSC plate. The test shall include stacking test and transverse
rigidity test with right hand door moved
9.4.1 Stacking Test
The test shall base on five (5) high stacked.
Internal Load: 1.8R-T, Testing load: 54,860 kg/post.
9.4.2 Racking Test
Test force: 11,430 kg.
9.4.3 Door Wall Strength Test
Test load: 5,650 kg, applied to the closed door side.
9.5 Inspection
9.5.1 Materials and Component Parts Inspection
All the materials and components will be inspected by Quality Control Dept. to
make sure that the most suitable and qualified components being used for the
containers and to meet this specification.
9.5.2 Production Line Inspection
Every container will be manufactured under effective Quality Control
procedures, and every production line of the factory will be inspected and
controlled by the Quality Control Dept. to meet this specification.
9.5.3 Container Quality Control
Container production shall be attended by the Buyer's representative and/or a
duly designated inspector. The concerned party shall have authority to provide
directives concerning the production and quality thereof.
Any and all costs which are resulted from poor production necessitating the
intervention and/or reinspection by the Buyer's inspector or appointed inspector
shall be borne by the container manufacturer.
The Buyer and/or it's designated inspectors shall have the right to recommend
the manufacturer to halt the production providing such is related to a quality
control problem that is not remediable without stopping the production line.
The manufacturer's failure to remedy a particular quality control problem on line
in a timely manner shall be interpreted as the manufacturer's inability to remedy
such quality control problems without stopping the production line.
Failure to stop the production line in accordance with the above mentioned
outline shall oblige the Buyer and/or it's designated inspector to immediately
report such to the manufacturer's regional and corporate headquarters and to
consider any unit produced following such as a rejected unit.
Pa e: 17 of20
This file Is strictly confidential and privileged. It Is Intended only for the use of the intended recipient tf you are
not the intended recipient, please notify us Immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
10. Documents Submission
CIMC shall submit the specification with following drawing ( 3 sets ):
General arrangement Side wall assembly
Base assembly Front end assembly
Rear end assembly Marking arrangement
Roof assembly
11. Guarantee
The guarantee period will commence at the day of delivery and the delivery is
not later than three ( 3 ) months after the containers are accepted by the owner.
11.1 Pajnt Guarantee
The paint system applied to the container surface shall be guaranteed against
corrosion and/or paint failure for a period of five (5) years.
The guarantee shall be applied to all the kinds of faults I failures affecting more
than 10 % of the painted surface, and partial or total repainting shall be assured
for the container(s) at the manufacturer's expense. Normal wear/tear, or
corrosion caused by acid, alkaline solution or result from damages by abrasion
impact or accident are excluded. Corrosions is defined as the rusting exceeding
RE3 ( European scale of degree of corrosion ).
11.2 Other Guarantee
All containers shall be guaranteed by CIMC against any defects or omissions in
construction, poor workmanship, or defective materials for a period of two ( 2 )
years. All plywood shall be warranted for five (5) years. Any damages caused
by mis-handling, mis-securing, mis-loading, impact and other natures of
accident are excluded. The self-adhesive film decal shall be guaranteed seven
( 7) years.
12. Materials
The main materials used in construction are as follows or approved equivalent,
and the tolerance of steel plate thickness will obey JIS standard G3193-1990.
Where used Materials
Front End Assembly
Front corner post
Front sill gusset
Front rail
Front panel
Front header
Base Assembly
Bottom side rail
Crossmernber
Outrigger
Gooseneck tunnel
Corten A or SPA-H
SS41
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Page: IS of20
This file Is strictly confidential and privileged. It Is Intended only for the use of the intended recipient If you are
not the Intended recipient, please notify us immediately by e-mail at hsd@cimc.com. or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http:f/www.fineprint.com
CIMC
Floor centre rail
Floor support angle
Rear End Assembly
Rear corner post (outer)
Rear corner post ( inner )
Door sill
Door header
Door panel frame
Door panel
Door hinge
Door hinge pin
Locking device
Locking cam, earn keeper
Locking rod
Door gasket
Gasket retainer
Washer
Rivet
Shim
Corner fitting
Side Wall Assembly
Side panel
Top side rail
Lashing bar, lashing ring
Ventilator
Roof Assembly
Roof corner gusset
Roof panel
Floor
Floor board
Floor screw
Note A:
Co.rten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
SM50YA
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
Corten A or SPA-H
40'x8'x9'6" TRITON
S25C, Electro zinc plated
Stainless steel
Saejin SJ-66M
or HH-EA with secura cam & keeper
S20C
STK41
EPDM
Stainless steel
Stainless steel
Stainless steel
EPDM.
SCW49
Corten A or SPA-H
Corten A or SPA-H
SS41, Electro zinc plated
A.B.S
Corten A or SPA-H
Corten A or SPA-H
Plywood
Electro zinc plated
Material
SS41
JISSCW49
SS50
Yield point (kg/sq.mm)
25
Tensile strength (kg/sq.mm)
41
S20C
S25C
SM50YA
Corten A
SM50A
28
29
25
28
37
35
33
49
50
42
46
50
49
50
Page: 19 of20
This file Is strictly confidential and privileged. It is intended only for the use of the Intended recipient tf you are
not the intended recipient, please notify us immediately by e·mall at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
CIMC 40'x8'x9'6" TRITON
Note 8: Approved supplier: As per Triton approved supplier list.
Revision List
c. Revision date: Jul. 28, 2003
1. Change the locking device to Saejin SJ-13BF Type or Haihang HH-E, with
secura cam and keeper.
d. Revision date: Dec. 10, 2003
1. In suppliers of marking, delete the "Long Chang".
2. The color of shop primer and main primer coatings shall be contrasting colors.
e. Revision date: Feb. 6, 2004
1. Locking rod tubes shall be MINIMUM 3mm thickness.
2. The floor center rail will be installed on thefinishing line after all blasting and
painting have been completed.
3. Material of marking: Cast Vinyl 3M VS 5018, Supplier of marking: As per Triton
Approved Supplier List.
4. Main materials used in construction from Corten skin to full Corten, and material
list to be revised accordingly.
5. Inside serial numbers should be changed to white kiss-cut.
f. Revision date: Mar. 30, 2004
1. Change the Locking device from Saejin SJ-13BF or HaiHang HH-E with secura
cam and keeper to Saejin SJ-66M or HH-EA with secura cam & keeper.
Page: 20 of20
This file is strictly confidential and privileged. It is Intended only for the use of the intended recipient. tf you are
not the intended recipient,. please notify us Immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130.
Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any
person.
PDF created with FinePrint pdfFactory trial version http://www.fineprint.com
Chevron
CHEVRON
PICEANCE BASIN
EXP. DATE 07--3l-10
INCORPORATED
0 Issued for Construction 19-Nov-08 TKG RLV
A Issued for Review 04-Nov-08 TKG RLV
Rev Status Date Origin. QA/QC LDE EM
Document Title:
PICEANCE FIRE PROTECTION PHILOSOPHY
PAl Project No. Document No. Page
2033 2033-201-00-ST -0001 1 of14
TKG
TKG
PM
',, ·;-· ... -,.
• ., i : -.! ••
Title: PICEANCE FIRE PROTECTION PffiLOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
TABLE OF CONTENTS
REV: 1
Page 2of14
1.0 EXECUTIVE SUMMARY ............................................................................................................ 3
2.0 PURPOSE •.••...•..••...•••.••.•..••.••.••.••.•.••.••.•.••.••.••.•.....•.•.••.•.••.•••••.•.•••.•.....••.••.•••.•••••••.••.•..•..•.•..••.•.••.•.. 4
3.0 SCOPE ••••••.••.•.•...•.••.•••.••••..•......•.•.••.•••••.••••.•.•...•.••.•.••.••••.•.••..........••.•••.••.•..••••••.•..••......•.••.••.•..•.••.•• 4
4.0 CONCLUSIONS ............................................................................................................................. 4
5.0 RECOMMENDATIONS .•.•••.••.•.••.••.••....•...••.••.••.•••••••.•.••.•....••.••.••.•••.••.•..•••.••.•....••.•.••.••.••.•.••.•.•••. 4
6.0 REFERENCE DOCUMENTS ...................................................................................................... 4
7.0 FACILITY DESIGN PARAMETERS ......................................................................................... 5
8.0 FLAMMABLE HYDROCARBON INVENTORY ..................................................................... 5
9.0 FACILITY AND ENCLOSURE DESIGN PARAMETERS •.•...•.••.•••••.•••.••.••••..•..•.....•.•.••.••••.••. 7
10.0 CONSTRUCTION ......................................................................................................................... 7
11.0 FIRE AND GAS DETECTION .................................................................................................... 9
12.0 FIRE SUPPRESSION .................................................................................................................... 9
13.0 CODE DISCUSSION •......•••.••.••.••••..........•.••.•.••.•.•••.•.•..•...••.••.••.••.••.••...•..........••.••.•..•••••••.•.••..•.... 10
Tables
Table I: Liquid Inventories .......................................................................................................................... 6
Appendix
Appendix A ................................................................................................................................................. 13
Appendix B ................................................................................................................................................. 14
Page2/14
1.0 EXECUTIVE SUMMARY
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV:1
Page3 of14
The Chevron Mid-Continent & Alaska Business Unit (Chevron) is currently developing facilities
in the Piceance Basin of Western Colorado for the purposes of natural gas production, treatment,
transmission, and delivery to sales pipelines. These facilities include modular facilities close to
the gas wellheads, as well as a number of modular unit process facilities at a Central Production
Facility (CPF) to be located north of the town of De Beque, Colorado.
Because of the unique nature of fire and explosion hazards at natural gas facilities, Chevron has
planned and designed these facilities to incorporate fire prevention and protection systems and
procedures in accordance with industry standards, relevant building and fire protection codes, and
Chevron's Safety in Design program. The purpose of this document is to present the design and
operational philosophy Chevron proposes for the development of these facilities within the CPF.
The key design parameter in the design of the fire protection system for the CPF is the ability to
quickly and automatically depressure most of the facility, shut down the flow of hydrocarbons to
the facility, and remove all electrical power, except essential power, upon automatic detection of
a fire anywhere in the facility.
As is typical in the petroleum industry, Chevron has designed the production and treatment
facilities at the CPF as a series of modular unit processes. Each module is designed to accomplish
some function or functions related to natural gas processing, such as removal of water and solids
flowing within the gas stream, removal of heavier hydrocarbons from the gas stream,
compression of the gas prior to release to a pipeline, metering the gas prior to delivery of the gas
to a customer's pipeline, etc. Because of the harsh weather conditions at the site, many of these
unit processes are enclosed to protect certain equipment and instrumentation from the elements.
Some of the process skids will be mostly enclosed; other process modules will have an enclosure
around the instrumentation and control equipment only. Most of the process enclosures will be
factory built, and Chevron has been working with the Colorado Division of Housing to secure
plan reviews and permits for these prefabricated facilities. Several of the facilities will be site-
built enclosures, including a large facility housing the main compression equipment at the CPF.
Additionally, some of the prefabricated facilities will house support and utility processes, but will
not house any significant hydrocarbon materials.
Because of the nature of the fire hazard associated with the enclosures housing process gases and
associated equipment, the primary focus of this narrative will be on the process buildings. The
process equipment enclosures are classified by the International Building Code (IBC) as buildings
with an Occupancy Classification of H-2. This rating is based on the amount of flammable gas
and liquids carried in the equipment and piping within the enclosures. Although buildings with an
H-2 occupancy rating are normally required to have an automatic sprinkler system, Chevron is
proposing to protect these facilities with a non-water-based emergency system in accordance with
the exemptions allowed in IBC Section 903.3.1.1.1.
The design and construction of the process building enclosures have been conducted after
identifying and taking into account the hazards associated with the types of equipment and
materials contained within the enclosure. The design and construction standards utilized are more
stringent than required by current industry codes and standards. The enclosures are constructed of
noncombustible materials and have fire and gas detection systems specifically designed for the
gas processing industry. The egress requirements of IBC Chapter 10 and the NFP A Life Safety
Code requirements are also incorporated into the design.
Page3/14
2.0 PURPOSE
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
Page 4 of14
This philosophy identifies the design parameters utilized to engineer equipment enclosures that
meet the requirements of the IBC for buildings with an H-2 rating but without an automatic
sprinkler system. This document also establishes that the level of life safety proposed for the
process facilities is equivalent to those code requirements.
3.0 SCOPE
This document only analyzes those equipment enclosures located at the Central Processing
Facility in Chevron's Piceance Basin Development. It focuses on those enclosures with an H-2
rating by identifying the hazards within the enclosure and the design measures used to mitigate
those hazards to personnel who may be present at the time of an incident.
4.0 CONCLUSIONS
The parameters utilized in the design and construction of the equipment enclosures covered by
this philosophy adequately protect personnel from the hazards due to the presence of
hydrocarbons in the enclosure, without employing automatic sprinkler systems.
5.0 RECOMMENDATIONS
All enclosures covered by this philosophy must be built and installed as designed. Additionally,
operational and maintenance procedures should be implemented to ensure that all safety systems
are tested and maintained in accordance with IBC and International Fire Code (IFC)
requirements.
6.0 REFERENCE DOCUMENTS
Reference Document
IBC 2003
IFC 2003
IMC 2003
APIRP14C
APIRP14G
Document Title
International Code Council -
International Building Code -2003
International Fire Code -2003
Interuational Mechanical Code -2003
American Petroleum Institute -
Recommended Practice for Analysis, Design, Installation, and
Testing of Basic Surface Safety Systems for Offshore
Production Platforms
Recommended Practice for Fire Prevention and Control on Open
Type Offshore Production Platforms
Page4/14
APIRP500
APIRP752
APIRP2030
API Publication 2510A
COGCC
30 CFR Chapter II
NFPA 101
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
PageS of14
Recommended Practice for Classification of Locations for
Electrical Installations at Petroleum Facilities Classified as Class
I, Division I and Division 2
Management of Hazards Associated with Location of Process
Plant Buildings
Application of Fixed Water Spray for Fire Protection in the
Petroleum and Petrochemical Industries
Fire Protection Considerations for the Design and Operation of
Liquid Petroleum Gas (LPG) Storage Facilities
Colorado Oil and Gas Conservation Commission -
Rules for Oil and Gas Development in Colorado -Section 606A
"Fire Prevention and Protection"
Code of Federal Regulations-
Title 30 (Mineral Resources) -Chapter II Part 250.800
"Production Safety Systems"
National Fire Protection Association-
Life Safety Code
7.0 FACILITY DESIGN PARAMETERS
The CPF is designed to be an unmanned facility. The control system is specifically designed to
ensure that in the case of a significant event all instrumentation fails safe, the main electrical feed
to the affected area is shut off, incoming hydrocarbon flow to the facility is blocked at the battery
limit (boundary) of the facility, and the bulk of the hydrocarbon inventory in the facility is
depressured to the facility's flare system. Although some limited portion of the piping and some
vessels within the plant may have a residual gas pressure after the shutdown, virtually all fuel
sources within the facility will be immediately shut off.
The CPF does not have water available for fire suppression activities. Additionally, no local fire
water system exists to provide for tie-in for CPF fire suppression systems.
8.0 FLAMMABLE HYDROCARBON INVENTORY
8.1 Liquid Inventory
The primary fire hazard within the enclosures listed in Table I is related to hydrocarbons
processed within the facility. In addition to various volumes of natural gas, these
buildings will contain various quantities of hydrocarbon condensates (condensates are
flammable hydrocarbon liquids that condense out of the gas stream when the gas is
exposed to typical ambient temperature and pressure).
The hydrocarbon condensate liquid contained in most of the process buildings in Table I
is a Class lA flammable liquid (its flash point is less than 73"F and its boiling point is
less than 100"F). The exempt quantity of Class lA liquids, per the IBC, is 30 gallons. The
exempt quantity for flammable gases in the IBC is I 000 standard cubic feet, which is
Page5/14
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV:1
Page 6of14
exceeded in each of the building enclosures. Due to the inventory of flammable materials
located in each enclosure, a rating of H-2 for each of the enclosures and compressor
building is warranted. Fire protection methods based on this occupancy classification are
further discussed below.
Gas Separator
Liquid
Separator
Gas Filter
Separator
Sales Gas
Compressors
Condensate
Loading
Produced
Water and
Condensate
Pumps
Flare Scrubber
Vapor
Recovery Unit
Fuel Gas
604
128
426
1013
--
34
253
42
1000
55
--
20
51
257
--
14
--
35
--
Condensate -16 37
Water
Condensate -2 78
Water
Condensate N/A N/A
Water
Condensate -20 34
Water
Lubricating oil 262 >300
Condensate -2 78
Water
Condensate -2 78
Water
Condensate -2 78
Water
Condensate -4 75
Water
Condensate -15 37
Water
Page6/14
Title: PICEANCE FIRE PROTECTION PHILOSOPHY ·--<
-#Mil Cnstomer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
9.0 FACILITY AND ENCLOSURE DESIGN PARAMETERS
9.1 General
REV: 1
Page7 of14
Almost all of the process building enclosures will contain some amount of hydrocarbon
condensate liquid, which is produced from the wellhead along with the lighter natural gas
components. Some of the individual unit processes are specifically designed to remove
these flammable liquids and transfer them to holding tanks elsewhere within the plant.
The volumes of flammable liquids in many of these enclosures exceed the IBC thresholds
at which a building is classified as H-2. These volumes may increase the fire hazard
within each enclosure to some degree, but do not change the overall philosophy of our
proposed fire protection program.
9.2 All flammable liquids and gases within the enclosures are totally contained within the
process piping and ASME-rated pressure vessels. An automatic fire and gas detection
system is provided to detect any leaks or fires.
9.3 In the event of a fire anywhere within the CPF, the facility is depressured to the flare to
remove the bulk of the flammable gas sources from the fire. Any remaining hydrocarbon
liquid would initially be protected and contained within the process piping and/or
vessel(s) in which it resides within the enclosure. The rate at which the hydrocarbon
liquid would contribute to the ongoing fire would depend upon the amount of damage in
the containing piping/vessel(s). If the containment is damaged or breached, the materials
would burn in place along with the remaining gaseous components. The relative volumes
of gas and liquids being burned, and access to the fire of an oxidizing airflow, would
determine the extent to which the liquid boils in place as it contributes to the fire.
9.4 Although a combination liquid-and-gas fire might burn hotter and longer than a pure gas
fire, the fundamental principle behind our proposed fire protection system is unchanged.
The system is designed to contain the fire and allow it to burn out in place. There is no
need to attempt to suppress the fire with a water-based sprinkler system. It would likely
cause a more substantial hazard by allowing the remaining flammable gases to form a
combustible cloud capable of re-ignition until allowed to dissipate.
9.5 It would also be undesirable for the fire department to attempt to put out the fire within
an enclosure prior to the consumption of the fuel exposed to the fire. As mentioned
above, the remaining gaseous components, along with liquid components that are
vaporized due to the heat of the fire, would be dangerous and subject to re-ignition. (See
sections 13.3.4 and 13.3.5 for details of this hazard.)
9.6 A closed drain system is provided that removes all liquid from the enclosure's coaming
area to a remote underground sump tank. The drain system incorporates P-traps to
prevent flammable gases from venting into the enclosure. Liquids collected in the
underground sump are subsequently pumped into the facility's above-ground storage
tanks.
10.0 CONSTRUCTION
Each enclosure has the following construction attributes:
10.1 All hazardous gases and liquids within each enclosure are housed in self-contained
process piping and/or pressure-rated vessels. Piping is designed and constructed in
Page 7/14
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST -0001
Date: 7 December 2008
REV:1
Page 8 of 14
accordance with ANSI B31.3 requirements for gas facilities of this type. All pressure
vessels are designed in accordance with applicable ASME Section VIII requirements for
these vessels.
10.2 Process piping and vessels are designed to contain all materials with no significant
leakage. A fire and gas detection system is specifically designed for each enclosure to
detect the presence of hydrocarbons in the air or a fire event, and will initiate emergency
shutdown systems within the plant upon detection of a significant amount of
hydrocarbons. (Details of this system are described in the following sections.)
10.3 Each enclosure is constructed entirely of noncombustible materials.
10.4 Additionally, all equipment, piping, instrumentation, junction boxes, panel boards and
cable within the enclosure are also noncombustible or flame-retardant.
10.5 Adequate access/egress is provided to allow safe evacuation from the enclosure in the
event of a fire or gas release in compliance with IBC and NFP A Life Safety Code
requirements. These criteria include the provision of at least two means of egress from
any building with travel distance to an exit greater than 25 feet. No dead-end corridors
are allowed in any of the buildings greater than 20 feet.
10.6 Ventilation is provided to the enclosure in compliance with IMC requirements.
10.7 Panic door hardware and emergency exit lighting are provided in compliance with IBC.
10.8 To prevent electrical ignition of hydrocarbon vapors, all electrical components on the
process skids are explosion-proof and rated for service in Class I, Group D, Division 1
atmospheres as rated by API RP 500, and each component is certified as such by a
Nationally Recognized Testing Laboratory (NRTL). All 208VAC and 120VAC wiring
and equipment within each process skid are wired to an on-skid explosion-proof
panelboard. All equipment in the compressor building is rated for Class I, Division 2.
(The distinction is a result of the presence of the combustion engines driving the
compressors.)
10.9 Although the enclosures are designed to be safe when continuously occupied, the
facilities in practice will be normally unoccupied. Personnel only occupy an enclosure
when conducting equipment monitoring and observance activities; doors are kept open
when the enclosure is occupied.
10.10 The operational activities typically require personnel in the enclosure for less than 15
minutes on any given day. Any maintenance activities within the facility will be
conducted under stringent safety protocols, including additional fire suppression
equipment and personnel being present and the use of lock-out/tag-out procedures.
10.11 Operational procedures at the plant prohibit the accumulation of any combustible
materials within the enclosure.
10.12 The design of the site surrounding each enclosure incorporates a barrier zone
approximately 20 feet wide covered with noncombustible gravel and no vegetation.
Additionally, the site has significant security measures in place, and no admittance to the
general public is allowed.
10.13 All enclosures and the process control and safety systems that interface with them were
designed using Chevron's "Offshore Gulf of Mexico" standards and design criteria.
Page 8/14
Title: PICEANCE FIRE PROTECTION PIULOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
Page 9of14
Chevron considers these standards to be more stringent than most onshore standards,
leading to a more conservative design.
11.0 FIRE AND GAS DETECTION
Each enclosure is equipped with the following fire aud gas detection technology, in strict
compliance with the IFC and API RP 500:
11.1 Infrared point gas detectors which are tied to a central monitoring system will initiate
shutdown of electrical service and hydrocarbon flow to and from the enclosure when gas
is detected. These detectors are set to alarm when flammable gas at a concentration of
20% of the lower explosive limit (LEL) is detected. A complete shutdown of power and
hydrocarbon flow to the enclosure is initiated when flammable gas at 40% of LEL is
detected. All detection and monitoring equipment used at the site is listed by a Nationally
Recognized Testing Laboratory (NRTL). See Appendix B.
11.2 A pneumatic fusible loop system consisting of stainless steel tubing pressurized with 40
psig instrument air, and including elements which will melt at 180°F, is provided on all
hydrocarbon processing equipment per API RP 500. This system is equipped with a
pressure sensor that is tied to a central monitoring system. A loss of pressure in the loop
will indicate the affected enclosure and will shut dowu hydrocarbon flow to and from the
enclosure and throughout the CPF and will initiate depressurization of the affected
facilities to a dedicated flare. See Appendix A.
11.3 "Triple-infrared" fire detectors will be installed in each enclosure, and when a fire is
detected, a programmable logic controller (PLC) will shut down the flow of
hydrocarbons to and from the enclosure, as well as throughout the CPF. The bulk of the
hydrocarbon inventories throughout the CPF will be depressured to a dedicated flare.
(Some minor residual amounts of gas under pressure will still be present in some vessels
and piping sections outside of the building enclosures.) Triple-infrared optical flame
detectors (known as 'fire eyes' in the gas processing industry) will be installed in all H-2
occupancy buildings and will be tied to the fire alarm systems described above.
11.4 The triple-infrared open-path fire detector system is independent from and redundant
with the pneumatic fusible loop system. Both of these systems are independent from the
gas detection system.
11.5 Note that the types of detectors described above in Sections 11.1 through 11.3 are
provided in lieu of the smoke detector system outlined in IBC Section 903.3.1.1.1. The
primary reason for this is that there are no commercially available weatherproof smoke
detectors that are rated for Class I, Division I service.
12.0 FIRE SUPPRESSION
For these process enclosures, the flammable content hazard located within these enclosures is
primarily pressurized natural gas. The experience within the petroleum industry is that a typical
water-based sprinkler system cannot extinguish a pressurized gas fire, and in fact can create more
of a hazard than it mitigates.
The standard of the natural gas industry, as codified in API RP 500, is that suppression of a
pressurized natural gas fire is best accomplished by immediately shutting off all incoming sources
Page9/14
Title: PICEANCE FIRE PROTECTION PIDLOSOPHY
-:-:'( ••• Cnstomer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
Page 10 of 14
of fuel aud venting all other inventories of fuel to a flare system. The remaining non-pressurized
gas, along with any associated hydrocarbon liquid, is allowed to burn itself out.
For manual suppression of small fires on a limited basis, each enclosure is equipped with hand-
held 30-lb Class ABC fire extinguishers located at each door.
13.0 CODE DISCUSSION
13.1 IBC
13.1.1 IBC 2003 normally requires an automatic fire sprinkler system for all H-2
occupancies.
13.1.2 All of the process buildings in this project are classified as H-2 due to the large
volume of hazardous materials.
13.1.3 However, these buildings qualify as exempt from this requirement per IBC
903.3.1.1.1 Exempt Locations. Comments applicable to the facility under
discussion are listed parenthetically following the code citation.
IBC 903.3.1.1.1. Exempt Locations .... Automatic sprinklers shall not be required
in the following rooms or areas where such rooms or areas are protected with an
approved automatic fire detection system in accordance with Section 907.2 that
will respond to visible or invisible particles of combustion. (In these facilities, an
API-compliant gas detection system is installed and designed to respond to
concentrations of flammable gas before any combustion takes place.)
Sprinklers shall not be omitted from any room merely because it is damp, of fire-
resistance-rated construction or contains electrical equipment
I. Any room where the application of water, or flame and water, constitutes a
serious life or fire hazard.
(This is true for these facilities. Water sprayed on a pressurized gas fire is
unlikely to stop the fire, and could add an explosive hazard due to an unburned
gas cloud if it did put out the fire momentarily.)
2. Any room or space where sprinklers are considered undesirable because of
the nature of the contents, when approved by the building official.
(This is true for these facilities. Because of the nature of the contents -
pressurized natural gas -the petroleum industry standard for safety is to mitigate
the risk with an API-RP500 compliant gas detection & emergency shutdown
system.)
3. Generator or transformer room ... Not Applicable
4. In rooms or areas that are of noncombustible construction with wholly
noncombustible contents.
Page 10/14
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
Page 11 of 14
(This exemption is partially true of the operating buildings in discussion. The
buildings are of noncombustible construction, although the hydrocarbon contents
within the process piping and vessels are combustible. However, upon detection
of fire, the process equipment is depressured and all flammable gases are vented
to the flare except for trace amounts remaining in the pipes at atmospheric
pressure. Although some vessels may remain pressurized, none of these vessels
are inside of building enclosures.)
13.1.4 IBC Discussion
13.2 IMC
In summary, it is believed the buildings proposed for the Chevron CPF are
exactly the type of facility envisioned by the code writers when developing this
exemption. There is no question that these facilities contain hazardous flammable
materials, but application of a water-based sprinkler system would be
counterproductive, and would create more safety hazards than it would solve. A
far more desirable solution is the substitution of a fire and gas-hazard detection
and emergency shutdown system specifically developed for this industry by the
API. With the concurrence of the Building Official and Fire Marshall of Garfield
County regarding this exemption, the proposed facilities will be in total
compliance with the intent and with the specific language incorporated into the
IBC, IFC and related International codes.
Each of the process equipment enclosures includes either fixed or manually operable
louvers which make the use of non-water (gaseous, dry chemical, carbon dioxide, foam,
etc.) fire suppression systems problematic. Louvers are provided in compliance with the
IMC, which mandates adequate ventilation for rooms containing hazardous materials.
Additionally, standard practice in the gas processing industry is to provide such
ventilation to allow flammable gases to disperse, ideally before hazardous accumulations
of the gases accumulate within the building. The reasoning within our industry, as
codified in API documents, is that ventilating the gas is much safer than trying to contain
it within the building.
13.3 API
The Chevron CPF is designed in its entirety to be in total compliance with applicable
standards of the American Petroleum Institute.
13.3 .1 API RP 500, as detailed above, provides the design standards and details for a
gas detection system specifically designed to prevent the accumulation of
hazardous levels of flammable and explosive gases as applicable to our industry.
13.3.2 API RP 14G Section 5.7.d "Automatic Fire Control Systems -Enclosed
Machinery Areas" indicates "Gas compressors, hydrocarbon pumps, and
generators in adequately ventilated enclosed areas are normally not protected by
automatic fire control systems."
13.3.3 API RP14G Section 5.6.c "Manual Fire Control Systems-Enclosed Machinery
Areas" recommends dry chemical fire extinguishers and these are provided in
each enclosure.
Page11/14
Title: PICEANCE FIRE PROTECTION PIDLOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
REV: 1
Page 12 of14
13.3.4 API RP2030 specifically discusses the hazards of attempting to suppress a
flammable liquid or gas fire with water in two sections:
6.4 EXTINGUISHMENT .... Extinguishment by water spray is generally most
effective where the fuel is a combustible solid, water-soluble liquid or high flash
point liquid. However, the risks associated with extinguishing certain fires should
be carefully evaluated. If significant quantities of flammable gases or vapors are
released a more hazardous condition with potential for explosive re-ignition can
be created by extinguishing such fires instead of allowing them to burn at a
controlled rate with appropriate surveillance and protection of surrounding
equipment.
7.2.3 Extinguishment. Extinguishment is seldom the primary purpose of water
spray system installations in the petroleum industry ... It should be noted that
extinguishment of low flash point hydrocarbon liquids with water spray is seldom
possible and not necessarily desirable. A key question during hazard analysis is
"If the material is extinguished while still generating vapor, is there a risk of
vapor cloud re-ignition?" (The answer is yes at this facility.)
13.3.5 API Publication 2510A is primarily geared towards the liquefied Petroleum gas
industry, but has relevant information for fighting pressurized gas fires.
Per Table 5-Water -Application Methods:
.. One disadvantage of water deluge and water sprays is that they ... may not be
effective for jet (torch) fires.
Also Section 5.5 Detection Systems gives general guidance on hydrocarbon
vapor detectors, heat detectors and flame detectors. This facility includes all three
systems, and complies with the guidance of this document.
13.3.6 Fire fighting and suppression standards in the oil and gas industry vary from
standard industrial, high rise, and low rise practices. The engineering standards
employed in the design of hydrocarbon equipment are conservative and attempt
to contain hydrocarbon inventories within the equipment. However, in the event
of a leak, the design of the external areas surrounding the equipment are designed
to quickly isolate the leak, depressure the equipment, prevent the spread of the
hydrocarbon leak, minimize the propagation of any fire event, maintain
mechanical integrity through inventory liquidation without catastrophic failure,
and minimize exposure to personnel and environment. Chevron SOPs require
facility personnel to not engage in fire fighting beyond the incipient stage. The
facility and the enclosures have been designed within these parameters.
Page12/14
Title: PICEANCE FIRE PROTECTION PIDLOSOPHY
Customer: Chevron
Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
Appendix A
1.0 GAS DETECTION SYSTEM OPERATING DETAILS
REV: 1
Page 13 of14
1.1 Each equipment enclosure is provided with a combustible gas detection system listed by
a Nationally Recognized Testing Laboratory (NRTL) which exceeds the requirements of
API Recommended Practice RP14C. The gas detection sensor is wired to the facility
Emergency Shutdown System (ESS).
1.2 When the gas detector in an equipment enclosure detects the presence of gas at 20%
Lower Explosive Limit (LEL), it performs the following functions:
• Indicates on the Human-Machine Interface (HMI) video screens in the Control
Room
• Indicates on the HMI on the nine (9) outdoor Local Control Panels
• Activates a dedicated alarm on the audible alarm system
• The 24VDC control system on the skid remains energized, and the skid remains
in operation.
1.3 When the gas detector in an enclosure detects the presence of gas at 40% LEL, it
performs the following functions:
• Indicates on the HMI video screens in the Control Room
• Indicates on the HMI on the nine (9) outdoor Local Control Panels
• Activates a dedicated alarm on the audible alarm system
• Trips off the AC power feed to that enclosure's explosion-proof panelboard at its
source in the Electrical Building.
• Shuts off all hydrocarbon flow to the enclosure from the source outside of the
enclosure
• Shutdown valves which shut off hydrocarbon flow are fail-safe, pneumatically
operated, and will also close upon safety system failure or loss of air pressure to
the fusible loop system.
• The 24VDC control system on the skid remains energized, but the skid remains
shut off from hydrocarbon flow until the shutdown is manually reset by the
Control Room operator.
1.4 The gas detection system shall be tested and recalibrated every 3 months in accordance
with 30 CFR Chapter II Part 250.804 "Production safety-system testing and records." The
gas detection system that is proposed will be certified by an NRTL to fully comply with
this standard and with the system design details contained within API RP 500.
Page13114
'!-,_,.,,
Title: PICEANCE FIRE PROTECTION PHILOSOPHY
Customer: Chevron •••• Project: Piceance Basin
Project Spec No: 2033-201-00-ST-0001
Date: 7 December 2008
Appendix B
REV:1
Page 14 of 14
1.0 EQUIPMENT ENCLOSURE FIRE DETECTION SYSTEM OPERATING DETAILS
1.1 Each equipment enclosure is provided with a pneumatic fusible plug loop fire detection
system which exceeds the requirements of API Recommended Practice RP14C. A
pressure transmitter, wired to the facility Emergency Shutdown System (ESS), monitors
the fusible loop's pneumatic pressure.
1.2 When a fusible plug inside of the equipment enclosure melts in the presence of a fire, the
pressure transmitter detects the loss of air pressure in the fusible loop system and signals
the ESS which performs the following functions:
• Indicates on the HMI video screens in the Control Room
• Indicates on the HMI on the nine (9) outdoor Local Control Panels
• Activates a dedicated alarm on the audible alarm system
• Trips off the AC power feed to that enclosure's explosion-proof panelboard at its
source in the Electrical Building.
• Shuts off all hydrocarbon flow to the entire facility
• Shutdown valves which shut off hydrocarbon flow are fail-safe, pneumatically
operated, and will also close upon safety system failure or loss of air pressure to
the fusible loop system.
• The 24VDC control system on the skid remains energized, but the skid remains
shut off from hydrocarbon flow until the shutdown is manually reset by the
Control Room operator.
• Depressures the bulk of the natural gas process lines and vessels within the
facility to the flare. (Some sections of piping and vessels outside of the building
enclosures, such as the glycol reboiler, may have minor amounts of residual gas
under pressure.)
1.3 Each of the enclosures rated for H-2 occupancy will also be equipped with triple infrared
flame detectors ("fire eyes") per section 8.3 and pneumatic fusible loop system per
section 8.2.
1.4 Because the enclosures are exposed to ambient weather and Class I, Division 1
conditions, and because there are no commercially available weatherproof smoke
detectors rated for Class I, Division 1 service, smoke detection systems will not be
installed in this facility. Instead, our design philosophy is to use gas detection to detect
the presence of a potentially dangerous atmospheric hazard and, in parallel, to use two
different technologies (triple infrared flame detection and pneumatic fusible heat
detection.) We propose the API-RPSOO methodology of detecting the gases and shutting
down the plant upon detection of dangerous levels of flammable gas.
Page 14/14
Parcel Detail
Garfield County Assessor/Treasurer
Parcel Detail Information
Page I of 5
Assessor IT reasureL~roperty Sear_~h I Assessor Subset Uuery I Assessor Sale_~Jl~iir!!fl
C.LEJ.rk.H Rer::orderRE:Lr::~tion Searr:;_h
Basir:;_[~ilding Charar::teristir::s I T <n< Information
P._arr::el Detail I Y_E!Iue Detail I S.Hles Detail I Residentiai/C_!Imrnerr::iallmgroyJJment Detail
Land Detail I Photograph~ I Mill Levy R~_yenues Detail
IT ax Area II Account Number II Parcel Number jj2DD7 Mill Levy I
I D2S II R2SD444 II 213SIS3DDDI4 II 28.87 I
Owner Name and Mailing Address
jCHEVRON USA INC
IC/0 CHEVRON TEXACO PROPERTY TAX
jP 0 BOX 285
jHOUSTON. TX 77DOI
Assessor's Parcel Description
(Not to be used as a legal description)
jSECT.TWN.RNG:IS-5-88 DESC: SEC.7:
jTHAT PT OF LOTS 12.14 AND NESENE
ILYING DESC: BELOW THE ESCARPMENT
I(NET 14.20AC) ALSO THAT PT OF DESC:
jTRS. 50.51 AND 58 LYING BELOW THE
jESCARPMENT (NET DESC: 175.17).
jSEC.8: THAT PT OF LOTS 2.4.7.8.
http:/ I www.garcoact.com/ assessor I parcel.asp? ParceiNumber= 21381630 0014
I
I
I
I
I
I
I
I
I
I
I
12/1612008
Parcel Detail Page 2 of 5
ISWNE. NW, DESC: NI/2SW. WI/2SE. I
!LYING BELOW THE ESCARPMENT (NET I
IDESC: 222.84AC). SEC.I7: THAT PT DT I
/LOTS 1(23.18), 3( DESC: 8.57). 4 I
/(8.80), 5(11.84). 8(15.00), 7 I
103.84). DESC: (80.81 TOTAL /73.0
NET) LYING BELOW THE ESCARPMENT
IDESC: ALL OF TRACKS 80(180 AC). I
/110(110 AC), 111(18D AC) DESC: AND I
/THOSE PARTS OF THE FOLLOWING TRS I
!LYING BELOW DESC: THE ESCARPMENT. I
ITRS. 57017), 80(35), 82(48), 84( I
IDESC: 118), 83(80), 81(120), 82 I
1(24). 87(48). 78(73). 88( DESC: I
/45), 80(58), 77003), 81(53), 78 I
/018). 75018). DESC: 82(52). 83 I
1(78). 84(121). 113021). 112(137). I
IDESC: 8-88 TR. 41080), AND THAT I
!PART OF TR. 108008). DESC: LYING I
jBELOW THE ESCARPMENT AKA: LUCKY I
/STRIKE #8 DESC: GLEN BEULAH. GEN. I
!JOFFRE #3 B 4 AND THOSE PARTS OF I
/DESC: THE FOLLOWING LYING BELOW THE I
/ESCARPMENT: GEN. DESC: JOFFRE 2.5-I
/14. LUCKY STRIKE 4-8. 10-14. AND I
/GEN. DESC: PERSHING I B 2. I
/SUC:R280037 BK:0472 PG:0381 BK:0445 I
IPG:0380 BK:I855 PG:I78 RECPT:888845 I
IBK:0858 PG:0842 I
http:/ I www.garcoact.coml assessor I parcel.asp?ParceiNumber= 21391 S30 0 014 1211S/200B
Parcel Detail
Location
Physical Address: IITWN 5 RGE 88 SEC IS I
Subdivision: I
Land Acres: 112840.21 I
Land Sq Ft: liD I
Section II Township II Range I
I IS II 5 II 88 I
2DDB Property Tax Valuation Information
II Actual Value II Assessed Value I
I Land: Jj SD.3DDIJ
I Improvements: Jl oiJ
I Total: IJ SD.3DDjl
Additipnal Value Detail
Most Recent Sale
!
l=l =====Sa=le=D=at==le:j
I Sale Price: I
Basic Building Characteristics
Number of Residential
lo Buildings:
Number of Comm/lnd jo Buildings:
No Building Records Found
http:/ I www.garcoact.com/ assessor I parcel.asp? ParceiNumber= 21381830 0014
17.48Dj
oj
17.4801
I
I
Page 3 of 5
12/IB/2008
Parcel Detail Page 4 of 5
Tax Information
I Tax Year II Transaction Type II Amount I
I 2007 II Tax Payment: Second Half II ($252.48)1
2007 II Tax Payment: First Half II ($252.48)1
2007 II Tax Amount II $504.921
2008 I Tax Payment: Second Half II ($238.20)1
2008 Tax Payment: First Half II ($238.20)1
2008 I Tax Amount II $472.401
2005 II Tax Payment: Second Half II ($300.99)1
I 2005 II Tax Payment: First Half II ($300.99)1
I 2005 II Tax Amount II $801.981
I 2004 II Tax Payment: Second Half II ($343.98)1
I 2004 II Tax Payment: First Half II ($343.98)1
I 2004 II Tax Amount II $887.981
I 2003 II Tax Payment: Second Half II ($420.50)1
I 2003 I Tax Payment: First Half II ($420.50)1
2003 Tax Amount II $841.001
2002 I Tax Payment: Second Half II ($422.10)1
2002 Tax Payment: First Half II ($422.10)1
2002 Tax Amount II $844.201
2001 Tax Payment: Whole II ($837.02)1
2001 II Tax Amount II $837.021
2000 II Tax Payment: Whole I ($871.98)1
2000 II Tax Amount $871.981
I 1999 II Tax Payment: Whole ($1.080.28)1
I 1999 II Tax Amount II $1.080.281
http:! I www.garcoact.coml assessor I parcel.asp? Parcel Number= 21391630 0014 1211612008