Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutOWTS SpecificationsOrenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 1 of 4
Biotube® ProPak Pump Package™
Technical Data SheetOrenco®
60-Hz Series Pump Packages General
Orenco’s Biotube® ProPak™ is a complete, integrated pump package for
filtering and pumping effluent from septic tanks. And its patented pump
vault technology eliminates the need for separate dosing tanks.
This document provides detailed information on the ProPak pump vault
and filter, 4-in. (100-mm) 60-Hz turbine effluent pump, and control panel.
For more information on other ProPak components, see the following
Orenco technical documents:
• Float Switch Assemblies (NSU-MF-MF-1)
• Discharge Assemblies (NTD-HV-HV-1)
• Splice Boxes (NTD-SB-SB-1)
• External Splice Box (NTD-SB-SB-1)
Applications
The Biotube ProPak is designed to filter and pump effluent to either
gravity or pressurized discharge points. It is intended for use in a septic
tank (one- or two-compartment) and can also be used in a pump tank.
The Biotube ProPak is designed to allow the effluent filter to be removed
for cleaning without the need to remove the pump vault or pump, simpli-
fying servicing.
Complete packages are available for on-demand or timed dosing sys-
tems with flow rates of 20, 30, and 50-gpm (1.3, 1.9, and 3.2 L/sec),
as well as with 50 Hz and 60 Hz power supplies.
Standard Models
BPP20DD, BPP20DD-SX, BPP30TDA, BPP30TDD-SX, BBPP50TDA,
BPP50TDD-SX
Product Code Diagram
Biotube® ProPak™ pump package components.
4-in. (100-mm)
turbine effluent pump
Pump motor
Pump
liquid end
Pump vault
Support pipe
Discharge
assembly
Float collar
Float stem
Floats
Float
bracket
Biotube® filter
cartridge
Vault inlet holes
External splice box
(Optional; internal splice
box comes standard.)
Riser lid
(not included)
Riser (not
included)
Control panel
BPP
Pump flow rate, nominal:
20 = 20 gpm (1.3 L/sec)
30 = 30 gpm (1.9 L/sec)
50 = 50 gpm (3.2 L/sec)
Control panel application:
DD = demand-dosing
TDA = timed-dosing, analog timer
TDD = timed dosing, digital timer, elapsed time
meter & counters
Standard options:
Blank = 57-in. (1448-mm) vault height, internal
splice box, standard discharge assembly
68 = 68-in. (1727-mm) vault height
SX = external splice box
CW = cold weather discharge assembly
DB = drainback discharge assembly
Q = cam lock
MFV = non-mercury float
-
Biotube® ProPak™ pump vault
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 2 of 4
ProPak™ Pump Vault
Materials of Construction
Vault body Polyethylene
Support pipes PVC
Dimensions, in. (mm)
A - Overall vault height 57 (1448) or 68 (1727)
B - Vault diameter 17.3 (439)
C - Inlet hole height 19 (475)
D - Inlet hole diameter (eight holes total) 2 (50)
E - Vault top to support pipe bracket base 3 (76)
F - Vault bottom to filter cartridge base 4 (102)
ProPak™ pump vault (shown with Biotube filter and effluent pump)
Biotube® Filter Cartridge
Materials of Construction
Filter tubes Polyethylene
Cartridge end plates Polyurethane
Handle assembly PVC
Dimensions, in. (mm)
A - Cartridge height 18 (457)
B - Cartridge width 12 (305)
Performance
Biotube® mesh opening 0.125 in. (3 mm)*
Total filter flow area 4.4 ft2 (0.4 m2)
Total filter surface area 14.5 ft2 (1.35 m2)
Maximum flow rate 140 gpm (8.8 L/sec)
*0.062-in. (1.6-mm) filter mesh available
Biotube® filter cartridge (shown with float switch assembly)
AA
D
E
B B
C
E
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 3 of 4
Pump Curves
Pump curves, such as those shown here, can help you determine
the best pump for your system. Pump curves show the relationship
between flow (gpm or L/sec) and pressure (TDH), providing a graphical
representation of a pump’s performance range. Pumps perform best
at their nominal flow rate, measured in gpm or L/sec.
4-in. (100-mm) Turbine Effluent Pumps
Orenco’s 4-in. (100 mm) Turbine Effluent Pumps are constructed of
lightweight, corrosion-resistant stainless steel and engineered plastics;
all are field-serviceable and repairable with common tools. All 60-Hz
PF Series models are CSA certified to the U.S. and Canadian safety
standards for effluent pumps, and meet UL requirements.
Power cords for Orenco’s 4-in. (100-mm) turbine effluent pumps are
Type SOOW 600-V motor cable (suitable for Class 1, Division 1 and 2
applications).
Materials of Construction
Discharge: Stainless steel or glass-filled polypropylene
Discharge bearing: Engineered thermoplastic (PEEK)
Diffusers: Glass-filled PPO
Impellers: Acetal (20-, 30-gmp), Noryl (50-gpm)
Intake screens: Polypropylene
Suction connection: Stainless steel
Drive shaft: 300 series stainless steel
Coupling: Sintered 300 series stainless steel
Shell: 300 series stainless steel
Lubricant: Deionized water and propylene glycol
Specifications
Nom. flow, Length Weight Discharge Impellers
gpm (L/sec) in. (mm) lb (kg) in., nominal 1
20 (1.3) 22.5 (572) 26 (11) 1.25 4
30 (1.9) 21.3 (541) 25 (11) 1.25 3
50 (3.2) 20.3 (516) 27 (12) 2.00 2
Performance
Nom. flow, hp (kW) Design Rated Min liquid
gpm (L/sec) flow amps cycles/day level, in. (mm) 2
20 (1.3) 0.5 (0.37) 12.3 300 18 (457)
30 (1.9) 0.5 (0.37) 11.8 300 20 (508)
50 (3.2) 0.5 (0.37) 12.1 300 24 (610)
1 Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge
hose and valve assemblies. Consult your Orenco Distributor about fittings to connect discharge
assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® ProPak™ Pump
Vault.
10 20 30 40 6050 70
0.63 1.26 1.89 2.52 3.793.15 4.42
140
120
100
80
60
40
20
Flow in gallons per minute (gpm)
Flow in liters per second (L/sec)
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
m
e
t
e
r
s
PF 500511
43
37
30
24
18
12
6
PF 200511
PF 300511
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 4 of 4
AUTO
OFF
MAN
NN1
Control Panel (Demand Dose)
Orenco’s ProPak™ demand dose control panels are specifically engineered
for the ProPak pump package and are ideal for applications such as
demand dosing from a septic tank into a conventional gravity drainfield.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
1. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
2. Circuit 120 V, 10 A, OFF/ON switch, Single pole breakers
3. Toggle switch Single-pole, double-throw HOA switch, 20 A
4. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
5. Audio alarm 120 V, automatic reset, DIN rail mount silence
relay
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence,”
120 V LED, UL Type 4X
Control Panel (Timed Dose)
Orenco’s ProPak timed dose control panels are specifically engineered for
the ProPak pump package and are ideal for applications such as timed
dosing from a septic tank into a pressurized drainfield or mound. Analog or
digital timers are available.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
Dual-mode Programmable for timed- or demand-dosing
(digital timed-dosing panels only)
1a. Analog timer 120 V, repeat cycle from 0.05 seconds to 30
(not shown) hours. Separate variable controls for OFF and
ON time periods
1b. Digital timer 120-V programmable logic unit with built-in LCD
(shown below) screen and programming keys. Provides control
functions and timing for panel operation
2. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
3. Circuit breakers 120 V, 10 A, OFF/ON switch. Single pole 120 V
4. Toggle Switch Single-pole, double-throw HOA switch, 20 A
5. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence”,
120 V LED, UL Type 4X
Control panel, demand-dose Control panel, timed-dose (digital timer model shown)
1b
2
3
4
56
1
2
3
4
5
6
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 1 of 6
PF Series 4-inch (100-mm) Submersible Effluent Pumps
Technical Data SheetOrenco®
Applications
Our 4-inch (100-mm) Submersible Effluent Pumps are designed to
transport screened effluent (with low TSS counts) from septic tanks or
separate dosing tanks. All our pumps are constructed of lightweight,
corrosion-resistant stainless steel and engineered plastics; all are field-
serviceable and repairable with common tools; and all 60-Hz PF Series
models are CSA certified to the U.S. and Canadian safety standards for
effluent pumps, meeting UL requirements.
Orenco’s Effluent Pumps are used in a variety of applications, including
pressurized drainfields, packed bed filters, mounds, aerobic units, effluent
irrigation, effluent sewers, wetlands, lagoons, and more. These pumps
are designed to be used with a Biotube® pump vault or after a secondary
treatment system.
Features/Specifications
To specify this pump for your installation, require the following:
• Minimum 24-hour run-dry capability with no deterioration in pump life
or performance*
• Patented 1⁄8-inch (3-mm) bypass orifice to ensure flow recirculation
for motor cooling and to prevent air bind
• Liquid end repair kits available for better long-term cost of ownership
• TRI-SEAL™ floating impeller design on 10, 15, 20, and 30 gpm
(0.6, 1.0, 1.3, and 1.9 L/sec) models; floating stack design on 50 and
75 gpm (3.2 and 4.7 L/sec) models
• Franklin Electric Super Stainless motor, rated for continuous use and
frequent cycling
• Type SOOW 600-V motor cable
• Five-year warranty on pump or retrofit liquid end from date of manu-
facture against defects in materials or workmanship
* Not applicable for 5-hp (3.73 kW) models
Standard Models
See specifications chart, pages 2-3, for a list of standard pumps. For
a complete list of available pumps, call Orenco.
Product Code Diagram
PF -
Nominal flow, gpm (L/sec):
10 = 10 (0.6) 15 = 15 (1.0)
20 = 20 (1.3) 30 = 30 (1.9)
50 = 50 (3.2) 75 = 75 (4.7)
Pump, PF Series
Frequency:
1 = single-phase 60 Hz
3 = three-phase 60 Hz
5 = single-phase 50 Hz
Voltage, nameplate:
1 = 115* 200 = 200
2 = 230† 4 = 460
Horsepower (kW):
03 = 1⁄3 hp (0.25) 05 = ½ hp (0.37)
07 = ¾ hp (0.56) 10 = 1 hp (0.75)
15 = 1-½ hp (1.11) 20 = 2 hp (1.50)
30 = 3 hp (2.24) 50 = 5 hp (3.73)
Cord length, ft (m):‡
Blank = 10 (3) 20 = 20 (6)
30 = 30 (9) 50 = 50 (15)
* ½-hp (0.37kW) only
†220 volts for 50 Hz pumps
‡Note: 20-foot cords are available only for single-phase pumps through 1-½ hp
Franklin
Super Stainless
Motor
Franklin
Liquid End
Discharge Connection
Bypass Orifice
Suction Connection
LR80980
LR2053896
Powered by
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 2 of 6
Specifications, 60 Hz
Pump Model
PF100511 10 (0.6) 0.50 (0.37) 1 115 120 12.7 12.7 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100512 10 (0.6) 0.50 (0.37) 1 230 240 6.3 6.3 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF10053200 10 (0.6) 0.50 (0.37) 3 200 208 3.8 3.8 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100712 4, 5 10 (0.6) 0.75 (0.56) 1 230 240 8.3 8.3 8 1 ¼ in. GFP 25.9 (658) 17 (432) 30 (14) 300
PF10073200 4, 5 10 (0.6) 0.75 (0.56) 3 200 208 5.1 5.2 8 1 ¼ in. GFP 25.4 (645) 17 (432) 31 (14) 300
PF101012 5, 6 10 (0.6) 1.00 (0.75) 1 230 240 9.6 9.6 9 1 ¼ in. GFP 27.9 (709) 18 (457) 33 (15) 100
PF10103200 5, 6 10 (0.6) 1.00 (0.75) 3 200 208 5.5 5.5 9 1 ¼ in. GFP 27.3 (693) 18 (457) 37 (17) 300
PF102012 5, 6, 7, 8 10 (0.6) 2.00 (1.49) 1 230 240 12.1 12.1 18 1 ¼ in. SS 39.5 (1003) 22 (559) 48 (22) 100
PF102032 5, 6, 8 10 (0.6) 2.00 (1.49) 3 230 240 7.5 7.6 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF10203200 5, 6, 8 10 (0.6) 2.00 (1.49) 3 200 208 8.7 8.7 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF150311 15 (1.0) 0.33 (0.25) 1 115 120 8.7 8.8 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF150312 15 (1.0) 0.33 (0.25) 1 230 240 4.4 4.5 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF200511 20 (1.3) 0.50 (0.37) 1 115 120 12.3 12.5 4 1 ¼ in. GFP 22.3 (566) 18 (457) 25 (11) 300
PF200512 20 (1.3) 0.50 (0.37) 1 230 240 6.4 6.5 4 1 ¼ in. GFP 22.5 (572) 18 (457) 26 (12) 300
PF20053200 20 (1.3) 0.50 (0.37) 3 200 208 3.7 3.8 4 1 ¼ in. GFP 22.3 (566) 18 (457) 26 (12) 300
PF201012 4, 5 20 (1.3) 1.00 (0.75) 1 230 240 10.5 10.5 7 1 ¼ in. GFP 28.4 (721) 20 (508) 33 (15) 100
PF20103200 4, 5 20 (1.3) 1.00 (0.75) 3 200 208 5.8 5.9 7 1 ¼ in. GFP 27.8 (706) 20 (508) 33 (15) 300
PF201512 4, 5 20 (1.3) 1.50 (1.11) 1 230 240 12.4 12.6 9 1 ¼ in. GFP 34.0 (864) 24 (610) 41 (19) 100
PF20153200 4, 5 20 (1.3) 1.50 (1.11) 3 200 208 7.1 7.2 9 1 ¼ in. GFP 30.7 (780) 20 (508) 35 (16) 300
PF300511 30 (1.9) 0.50 (0.37) 1 115 120 11.8 11.8 3 1 ¼ in. GFP 21.3 (541) 20 (508) 28 (13) 300
PF300512 30 (1.9) 0.50 (0.37) 1 230 240 6.2 6.2 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF30053200 30 (1.9) 0.50 (0.37) 3 200 208 3.6 3.6 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF300712 30 (1.9) 0.75 (0.56) 1 230 240 8.5 8.5 5 1 ¼ in. GFP 24.8 (630) 21 (533) 29 (13) 300
PF30073200 30 (1.9) 0.75 (0.56) 3 200 208 4.9 4.9 5 1 ¼ in. GFP 24.6 (625) 21 (533) 30 (14) 300
PF301012 4 30 (1.9) 1.00 (0.75) 1 230 240 10.4 10.4 6 1 ¼ in. GFP 27.0 (686) 22 (559) 32 (15) 100
PF30103200 4 30 (1.9) 1.00 (0.75) 3 200 208 5.8 5.8 6 1 ¼ in. GFP 26.4 (671) 22 (559) 33 (15) 300
PF301512 4, 5 30 (1.9) 1.50 (1.11) 1 230 240 12.6 12.6 8 1 ¼ in. GFP 32.8 (833) 24 (610) 40 (18) 100
PF30153200 4, 5 30 (1.9) 1.50 (1.11) 3 200 208 6.9 6.9 8 1 ¼ in. GFP 29.8 (757) 22 (559) 34 (15) 300
PF301534 4, 5 30 (1.9) 1.50 (1.11) 3 460 480 2.8 2.8 8 1 ¼ in. GFP 29.5 (685) 22 (559) 34 (15) 300
PF302012 5, 6, 7 30 (1.9) 2.00 (1.49) 1 230 240 11.0 11.0 10 1 ¼ in. SS 35.5 (902) 26 (660) 44 (20) 100
PF30203200 5, 6 30 (1.9) 2.00 (1.49) 3 200 208 9.3 9.3 10 1 ¼ in. SS 34.0 (864) 24 (610) 41 (19) 300
PF303012 5, 6, 7, 8 30 (1.9) 3.00 (2.23) 1 230 240 16.8 16.8 14 1 ¼ in. SS 44.5 (1130) 33 (838) 54 (24) 100
PF303032 5, 6, 8 30 (1.9) 3.00 (2.23) 3 230 240 10.0 10.1 14 1 ¼ in. SS 44.3 (1125) 27 (686) 52 (24) 300
PF305012 5, 6, 7, 8 30 (1.9) 5.00 (3.73) 1 230 240 25.6 25.8 23 1 ¼ in. SS 66.5 (1689) 53 (1346) 82 (37) 100
PF305032 5, 6, 8 30 (1.9) 5.00 (3.73) 3 230 240 16.6 16.6 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF30503200 5, 6, 8 30 (1.9) 5.00 (3.73) 3 200 208 18.7 18.7 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF500511 50 (3.2) 0.50 (0.37) 1 115 120 12.1 12.1 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500512 50 (3.2) 0.50 (0.37) 1 230 240 6.2 6.2 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500532 50 (3.2) 0.50 (0.37) 3 230 240 3.0 3.0 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF50053200 50 (3.2) 0.50 (0.37) 3 200 208 3.7 3.7 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500534 50 (3.2) 0.50 (0.37) 3 460 480 1.5 1.5 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500712 50 (3.2) 0.75 (0.56) 1 230 240 8.5 8.5 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF500732 50 (3.2) 0.75 (0.56) 3 230 240 3.9 3.9 3 2 in. SS 23.7 (602) 25 (635) 32 (15) 300
PF50073200 50 (3.2) 0.75 (0.56) 3 200 208 4.9 4.9 3 2 in. SS 23.1 (587) 26 (660) 32 (15) 300
De
s
i
g
n
g
p
m
(L
/
s
e
c
)
Ho
r
s
e
p
o
w
e
r
(k
W
)
Ph
a
s
e
Na
m
e
p
l
a
t
e
vo
l
t
a
g
e
Ac
t
u
a
l
v
o
l
t
a
g
e
De
s
i
g
n
f
l
o
w
am
p
s
Ma
x
a
m
p
s
Im
p
e
l
l
e
r
s
Di
s
c
h
a
r
g
e
s
i
z
e
an
d
m
a
t
e
r
i
a
l
1
Le
n
g
t
h
,
i
n
.
(
m
m
)
Mi
n
.
l
i
q
u
i
d
l
e
v
e
l
,
2
in
.
(
m
m
)
We
i
g
h
t
,
3 l
b
(
k
g
)
Ra
t
e
d
c
y
c
l
e
s
/
d
a
y
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 3 of 6
Specifications, 60 Hz (continued)
Pump Model
PF500734 50 (3.2) 0.75 (0.56) 3 460 480 1.8 1.8 3 2 in. SS 34.8 (884) 25 (635) 31 (14) 300
PF501012 50 (3.2) 1.00 (0.75) 1 230 240 10.1 10.1 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF50103200 50 (3.2) 1.00 (0.75) 3 200 208 5.7 5.7 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF501034 50 (3.2) 1.00 (0.75) 3 460 480 2.2 2.2 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF5015124 50 (3.2) 1.50 (1.11) 1 230 240 12.5 12.6 5 2 in. SS 32.5 (826) 30 (762) 41 (19) 100
PF501532004 50 (3.2) 1.50 (1.11) 3 200 208 7.0 7.0 5 2 in. SS 29.3 (744) 26 (660) 35 (16) 300
PF503012 4, 5, 7, 8 50 (3.2) 3.00 (2.23) 1 230 240 17.7 17.7 8 2 in. SS 43.0 (1092) 37 (940) 55 (25) 100
PF50303200 4, 5, 8 50 (3.2) 3.00 (2.23) 3 200 208 13.1 13.1 8 2 in. SS 43.4 (1102) 30 (762) 55 (25) 300
PF503034 4, 5, 8 50 (3.2) 3.00 (2.23) 3 460 480 5.3 5.3 8 2 in. SS 40.0 (1016) 31 (787) 55 (25) 300
PF505012 5,6,7,8 50 (3.2) 5.00 (3.73) 1 230 240 26.2 26.4 13 2 in. SS 65.4 (1661) 55 (1397) 64 (29) 300
PF505032 5,6,7,8 50 (3.2) 5.00 (3.73) 3 230 240 16.5 16.5 13 2 in. SS 59.3 (1506) 49 (1245) 64 (29) 300
PF751012 75 (4.7) 1.00 (0.75) 1 230 240 9.9 10.0 3 2 in. SS 27.0 (686) 27 (686) 34 (15) 100
PF751512 75 (4.7) 1.50 (1.11) 1 230 240 12.1 12.3 4 2 in. SS 33.4 (848) 30 (762) 44 (20) 100
Specifications, 50 Hz
Pump Model
PF100552 10 (0.6) 0.50 (0.37) 1 220 230 3.9 4.1 6 1 ¼ in. GFP 23.0 (584) 17 (432) 26 (12) 300
PF100752 4, 5 10 (0.6) 0.75 (0.56) 1 220 230 6.2 6.2 9 1 ¼ in. GFP 26.8 (658) 17 (432) 30 (14) 300
PF101552 5, 6 10 (0.6) 1.50 (1.11) 1 220 230 10.5 11.4 18 1 ¼ in. SS 39.5 (1003) 22 (559) 46 (21) 300
PF300552 30 (1.9) 0.50 (0.37) 1 220 230 4.1 4.1 4 1 ¼ in. GFP 22.5 (572) 19 (483) 26 (12) 300
PF300752 30 (1.9) 0.75 (0.56) 1 220 230 6.1 6.1 5 1 ¼ in. GFP 24.8 (630) 19 (483) 29 (13) 300
PF301052 30 (1.9) 1.00 (0.75) 1 220 230 7.4 7.4 7 1 ¼ in. GFP 28.4 (721) 20 (508) 32 (15) 100
PF301552 4, 5 30 (1.9) 1.50 (1.11) 1 220 230 9.3 9.3 8 1 ¼ in. GFP 35.4 (899) 24 (610) 40 (18) 100
PF500552 50 (3.2) 0.50 (0.37) 1 220 230 4.0 4.0 2 2 in. SS 20.3 (516) 25 (635) 29 (13) 300
PF500752 50 (3.2) 0.75 (0.56) 1 220 230 6.3 6.4 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF501052 50 (3.2) 1.00 (0.75) 1 220 230 7.3 7.4 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF501552 50 (3.2) 1.50 (1.11) 1 220 230 9.1 9.1 5 2 in. SS 32.5 (826) 30 (762) 42 (19) 100
PF751052 75 (3.2) 1.00 (0.75) 1 220 230 7.3 7.3 4 2 in. SS 30.0 (762) 27 (686) 34 (15) 100
1 GFP = glass-filled polypropylene; SS = stainless steel. The 1 ¼-in. NPT GFP discharge is 2 7⁄8 in. octagonal across flats; the 1 ¼-in. NPT SS discharge is 2 1⁄8 in. octagonal across flats; and the
2-in. NPT SS discharge is 2 7⁄8 in. hexagonal across flats. Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge hose and valve assemblies. Consult your Orenco
Distributor about fittings to connect hose and valve assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® Pump Vault or Universal Flow Inducer. In other applications, minimum liquid level should be top of pump. Consult
Orenco for more information.
3 Weight includes carton and 10-ft (3-m) cord.
4 High-pressure discharge assembly required.
5 Do not use cam-lock option (Q) on discharge assembly.
6 Custom discharge assembly required for these pumps. Contact Orenco.
7 Capacitor pack (sold separately or installed in a custom control panel) required for this pump. Contact Orenco.
8 Torque locks are available for all pumps, and are supplied with 3-hp and 5-hp pumps.
De
s
i
g
n
g
p
m
(L
/
s
e
c
)
Ho
r
s
e
p
o
w
e
r
(k
W
)
Ph
a
s
e
Na
m
e
p
l
a
t
e
vo
l
t
a
g
e
Ac
t
u
a
l
v
o
l
t
a
g
e
De
s
i
g
n
f
l
o
w
am
p
s
Ma
x
a
m
p
s
Im
p
e
l
l
e
r
s
Di
s
c
h
a
r
g
e
s
i
z
e
an
d
m
a
t
e
r
i
a
l
1
Le
n
g
t
h
,
i
n
.
(
m
m
)
Mi
n
.
l
i
q
u
i
d
l
e
v
e
l
,
2
in
.
(
m
m
)
We
i
g
h
t
,
3 l
b
(
k
g
)
Ra
t
e
d
c
y
c
l
e
s
/
d
a
y
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 4 of 6
Materials of Construction
Discharge Glass-filled polypropylene or stainless steel
Discharge bearing Engineered thermoplastic (PEEK)
Diffusers Glass-filled PPO (Noryl GFN3)
Impellers Celcon® acetal copolymer on 10-, 20, and 30-gpm models; 50-gpm impellers are Noryl GFN3
Intake screen Polypropylene
Suction connection Stainless steel
Drive shaft 7/16 inch hexagonal stainless steel, 300 series
Coupling Sintered stainless steel, 300 series
Shell Stainless steel, 300 series
Motor Franklin motor exterior constructed of stainless steel. Motor filled with deionized water and propylene glycol for constant lubrication. Hermetically
sealed motor housing ensures moisture-free windings. All thrust absorbed by Kingsbury-type thrust bearing. Rated for continuous duty. Single-
phase motors and 200 and 230 V 3-phase motors equipped with surge arrestors for added security. Single-phase motors through 1.5 hp
(1.11 kW) have built-in thermal overload protection, which trips at 203-221˚ F (95-105˚ C).
Using a Pump Curve
A pump curve helps you determine the best pump for your system. Pump curves show the relationship between flow (gpm or L/sec) and pressure
(total dynamic head, or TDH), providing a graphical representation of a pump’s optimal performance range. Pumps perform best at their nominal
flow rate — the value, measured in gpm, expressed by the first two numerals in an Orenco pump nomenclature. The graphs in this section show
optimal pump operation ranges with a solid line. Flow flow rates outside of these ranges are shown with a dashed line. For the most accurate
pump specification, use Orenco’s PumpSelect™ software.
Pump Curves, 60 Hz Models
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
24 81012141660
800
700
600
500
400
300
200
100 PF1005-FC
w/ ¼" flow
controller
PF10 Series, 60 Hz, 0.5 - 2.0 hp
PF1007
PF1010
PF1020
PF1005
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
36 12 15 18 21 2490
160
140
120
100
80
60
40
20
0
PF1503
PF15 Series, 60 Hz, 0.3 hp
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 5 of 6
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
5102025303540150
400
350
300
250
200
150
100
50
0
PF2005
PF2010
PF2015
PF20 Series, 60 Hz, 0.5 - 1.5 hp
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
510202530354045150
800
900
700
600
500
400
300
200
100
0
PF3005
PF3007
PF3010
PF3015
PF3020
PF3030
PF3050 PF30 Series, 60 Hz, 0.5 - 5.0 hp
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
450
400
350
300
250
200
150
100
50
0 10 02040506070809030
PF5050
PF5030
PF5015
PF5010
PF5007
PF5005
PF50 Series, 60 Hz, 0.5 - 5.0 hp
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
Flow in gallons per minute (gpm)
10 20 40 50 60 70 80 90 100300
80
90
100
70
60
50
40
30
20
10
0
PF75 Series, 60 Hz, 1.0 - 1.5 hpPF7515
PF7510
60 Hz Models (continued)
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 6 of 6
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
m
e
t
e
r
s
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
,
n
o
m
i
n
a
l
Flow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.90.80.70.60.50.40.30.20.10
13119.57.96.34.83.21.6
120
100
80
60
40
20
0
160
180
140
394
328
262
197
131
66
525
459
PF100552
PF100752
PF101552
PF1005-FC
w/ 6mm flow
controller
PF10 Series, 50 Hz, 0.37 - 1.11 kW
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
m
e
t
e
r
s
To
ta
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
,
n
o
m
i
n
a
l
Flow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.8 1.2 1.6 2.0 2.40.40
13 19 25 326.3
60
80
100
120
40
20
0
197
262
328
131
66
PF301552
PF301052
PF300752
PF300552
PF30 Series, 50 Hz, 0.37 - 1.11 kW
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
m
e
t
e
r
s
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
,
n
o
m
i
n
a
l
Flow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.51.50
7.9 16 32 40 48 56 6324
40
45
35
30
25
20
15
10
5
0
131
115
98
82
66
49
33
16
PF501552
PF501052
PF500752
PF500552
PF50 Series, 50 Hz, 0.37 - 1.11 kW
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
m
e
t
e
r
s
Tot
a
l
d
y
n
a
m
i
c
h
e
a
d
(
T
D
H
)
i
n
f
e
e
t
,
n
o
m
i
n
a
l
Flow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.6 1.2 2.4 3.0 3.6 4.2 5.44.8 6.01.80
10 19 4838 57 67 76 8629
27
30
24
21
18
15
12
9
6
3
0
89
79
69
59
49
39
30
20
PF751052
PF75 Series, 50 Hz, 0.75 kW
Pump Curves, 50 Hz Models
Introduction
Orenco’s automatic distributing valve assemblies, pressurized with small high-head effluent
pumps, are useful for distributing effluent to multiple zones. These zones can be segments
of sand filter manifolds, drainfields, or other effluent distribution systems. Distributing
valve assemblies can substantially simplify the design and installation of a distribution sys-
tem and reduce installation costs. This is particularly true where a distributing valve assem-
bly is used instead of multiple pumps and/or electrically operated valves. Additionally, a
reduction in long term operation and maintenance costs is realized due to a reduced size
and/or number of pumps. More even distribution can be achieved on sloping sites by zoning
laterals at equal elevations. This eliminates drainback to lower lines and the unequal distrib-
ution of effluent that occurs at the beginning of a cycle.
Valve Operation
The valve itself has only a few moving parts, requires no electricity, and alternates automati-
cally each cycle. Refer to Figure 1 for the following valve operation description. The flow
of the incoming effluent forces the rubber flap disk 1 to seat against the valve bottom 2.
The opening 3 in the rubber flap disk aligns with an opening in the valve bottom to allow
flow to only one valve outlet. The stem 4 houses a stainless steel spring which pushes the
rubber flap disk away from the valve bottom after the flow of effluent stops. The stem acts
as a cam follower and rotates the rubber flap disk as the stem is raised and lowered through
the cam 5. The force from the flow of effluent pushes the stem down through the cam and
the stainless steel spring pushes the stem back up through the cam when the flow of effluent
stops. Each linear motion of the stem allows the rubber flap disk to rotate half the distance
necessary to reach the next outlet. When there is no flow, the rubber flap disk is in the “up”
position and is not seated against the valve bottom.
5
4
3
2
1
Inlet
Outlets
Figure 1:
6000 Series Valve
Orenco Automatic Distributing
Valve Assemblies
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 1 of 6
For Wastewater Effluent Systems
This article may describe design criteria that was in effect at the time the article was written. FOR CURRENT DESIGN
CRITERIA, call Orenco Systems, Inc. at 1-800-348-9843.
The Distributing Valve Assembly
The Orenco Automatic Distributing Valve Assembly combines the distributing valve itself and sever-
al other components to give a complete preassembled unit that is easy to install, monitor, and main-
tain. Figure 2 shows a complete assembly. Because distributing valves with several outlets can be
difficult to line up and glue together in the field, the discharge lines in the assemblies are glued in
place at Orenco. The unions (1) allow removal and maintenance of the valve. The clear PVC pipe
sections (2) give a visual check of which discharge line is being pressurized. The inlet ball valve (3)
allows a quick, simple method to test for proper valve cycling. The ball valve also stops the flow of
effluent in case the pump is activated unexpectedly during maintenance or inspection. Check valves
may be necessary on the discharge lines. Use of check valves is discussed in the valve positioning
section.
Valve Assembly Hydraulics
Liquid flowing through the valve assembly must pass through fairly small openings and make several
changes in direction. Because of this, headlosses through the valve assembly are fairly high. Table 1
gives the headloss equations for several different assemblies and Figure 3 shows the graphical repre-
sentations of these equations. Orenco recommends that high-head turbine pumps be used to pressur-
ize the valve assemblies to ensure enough head is available for proper system operation. High-head
turbine pumps are also recommended because the use of a distributing valve usually requires more
frequent pump cycling. The high-head turbine pumps are designed for high cycling systems and will
outlast conventional effluent pumps by a factor of 10 or more in a high cycling mode. Furthermore,
the high-head turbine pump intake is 12 inches or more above the bottom of the pump and tends to
prevent any settled solids from being pumped into the distribution valve and obstructing its opera-
tion. A minimum flow rate through the distributing valve is required to ensure proper seating of the
rubber flap disk. Minimum flow rates for the various models are given in Table 1.
Figure 2:
Orenco Distributing Valve Assembly (6000 Series Valve)
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 2 of 6
Table 1. Automatic Distributing Valve Assembly Headloss Equations
Model Series Equation Operating Range (gpm)
V4400A HL = 0.085 x Q1.45 10 - 40
V4600A HL = 0.085 x Q1.58 10 - 25
V6400A HL = 0.0045 x Q2 + 3.5 x (1 - e-0.06Q) 15 - 70
V6600A HL = 0.0049 x Q2 + 5.5 x (1 - e-0.1Q) 15 - 70
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 3 of 6
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Flow (gpm)
He
a
d
L
o
s
s
T
h
r
o
u
g
h
A
s
s
e
m
b
l
y
(
f
t
.
)
V4600A
V4400A
V6600A
V6400A
The Pumping System
Although the distributing valve was designed for the irrigation industry, it has started to gain fairly
wide acceptance in the effluent pumping industry. However, because of the mechanical movements
of the valve, it is necessary to take steps to prevent solids from reaching the distributing valve that
may impede the operation of the valve. Orenco Biotube®Pump Vaults — when properly sized and
installed — provide the necessary protection to prevent valve malfunction. The Biotube®pump vault
accepts effluent only from the clear zone between a tank’s scum and sludge layers and then filters
this effluent through a very large surface area screen cartridge. Without this protection in effluent
systems, the valve has very little chance of reliable long-term operation.
Figure 3:
Automatic distributing valve assembly headloss curves
Valve Positioning
The physical position of the valve in relation to the pump and the discharge point is very important
for proper valve operation. The most reliable operation occurs when the valve is placed at the high
point in the system and as close to the pump as possible. The transport line between the pump and
valve should be kept full if possible. If the line is empty at the beginning of each cycle, pockets of
air during filling can cause random rotation of the valve. The valve is particularly vulnerable to this
erratic rotation with empty lines that are long and not laid at a constant grade. An ideal valve loca-
tion is shown in Figure 4.
If the final discharge point is more than about 2 feet above the valve and the system does not drain
back into the dosing tank, check valves should be installed on the lines immediately following the
valve and a pressure release hole or line should be installed just prior to the valve. This pressure
release hole or line can go into a return line to the dosing tank or to a “minidrainfield” near the valve.
In order for the valve to rotate reliably, no more than about 2 feet of head should remain against the
valve to allow the rubber flap disk to return to its up position. In many cases, it may take from one
minute to several minutes for the pressure in the valve to be lowered enough for proper rotation to
occur. Special care should be taken when installing systems controlled by programmable timers to
ensure cycling does not occur too rapidly. Figure 5 illustrates a valve assembly using check valves.
Pumping downhill to the valve should be avoided unless the transport line is very short and the ele-
vation between the discharge line out of the tank and the valve is less than about 2 feet. If the valve
is located many feet below the dosing tank, random cycling may occur while the transport line drains
through the valve at the end of the cycle. A pressure sustaining valve located just before the distrib-
uting valve may overcome this problem in some instances.
Dosing Tank
Discharge Laterals
Distributing Valve Assembly
Transport Line
Figure 4:
Ideal valve location
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 4 of 6
System Startup
Refer to the Hydrotek Valve booklet that is provided with the distributing valve assembly for the
sequencing of the valve outlets. The transport line should always be flushed with clean water before
installing the valve. Any sand, gravel, or other foreign objects that may have been in the pipe during
installation can easily become lodged in the distributing valve, causing malfunction.
With the pump running, alternately close and open the ball valve on the distributing valve assembly
to check proper rotation of the valve. (Note: If check valves are used on the lines after the distribut-
ing valve, the pump may need to be turned on and off to allow the pressure to be released from the
valve.) If visual operation of which zone is operating is not possible, watch the clear pipe on each
line for indication of which zone is operating.
Maintenance
Annually check for proper operation by following procedures listed in the Hydrotek Valve booklet
and system startup procedures listed above.
Troubleshooting
1. PROBLEM: Valve does not change or cycle to next zone or outlet
CAUSE: The stem and disk assembly is not rotating when water flow is turned off and then
back on.
SOLUTION 1: Ensure that there is no debris inside the cam. Clean and carefully reinstall the cam.
SOLUTION 2: If fewer than the maximum number of outlets are being used, check the installation
of the cam. Ensure that the stem and disk assembly is not being held down by an
improperly installed cam. Refer to the cam replacement instructions.
h
Check Valves if h>2'-0"
Distributing Valve Assembly
Transport Line
Dosing Tank
Pressure Release
Line if h>2'-0"
Discharge Laterals
Figure 5:
Valve assembly below final discharge point
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 5 of 6
SOLUTION 3: Remove the valve top and check for proper movement of stem and disk assembly.
Check for and remove any debris or foreign objects that may jam or retard the
movement of the disk.
SOLUTION 4: Check for freedom of movement of stem and disk assembly up and down over the
center pin in bottom of valve. Scale deposits may build up on the pin and hold stem
and disk assembly down. Clean pin and again check for freedom of movement.
SOLUTION 5: Be sure that all operating outlets are not capped and that the flow to operating zones
is not restricted in any manner. This would cause pressure to build up in the valve
and lock the stem and disk assembly in the down position.
SOLUTION 6: The backflow of water from uphill lines may be preventing the valve from cycling
properly. This can happen when the valve is placed too far below an elevated line.
If the valve cannot be placed close to the high point of the system, a check valve
should be installed near the valve in the outlet line that runs uphill from the valve
and a drain line installed just prior to the valve to relieve the pressure.
2. PROBLEM: Water comes out of all the valve outlets
CAUSE: Stem and disk assembly not seating properly on valve outlet.
SOLUTION 1: Check for sufficient water flow. A minimum flow rate is required to properly seat
the disk as shown in Table 1.
SOLUTION 2: Remove the valve top and check the inside walls to ensure that nothing is interfering
with the up and down movement of the stem and disk assembly inside the valve.
SOLUTION 3: Make sure that the operating outlets are not capped and that the flow to the operat-
ing zones are not restricted in any manner.
3. PROBLEM: Valve skips outlets or zones
CAUSE: Pumping into an empty transport line — especially downhill — may cause the valve
to skip outlets from pockets of air allowing the rubber flap disk to raise during a
cycle.
SOLUTION 1: Keep the transport line full.
SOLUTION 2: If the line must remain empty between cycles, use a larger diameter transport line
laid at a constant grade to prevent air pockets from forming.
CAUSE: The stem and disk assembly is being advanced past the desired outlet.
SOLUTION 1: Ensure that the correct cam for the desired number of zones is installed and that the
outlet lines are installed to the correct outlet ports of the valve as indicated by the
zone numbers on the top of the cam.
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 6 of 6
Distributing Valves
General
Orenco’s Automatic Distributing Valve Assemblies are
mechanically operated and sequentially redirect the
pump’s flow to multiple zones or cells in a distribution
field. Valve actuation is accomplished by a combination
of pressure and flow. Automatic Distributing Valve
Assemblies allow the use of smaller horsepower pumps
on large sand filters and drainfields. For example, a large
community drainfield requiring 300 gpm can use a six-line
Valve Assembly to reduce the pump flow rate requirement
to only 50 gpm.
Orenco only warrants Automatic Distributing Valves when
used in conjunction with High-Head Effluent Pumps with
Biotube®Pump Vaults to provide pressure and flow
requirements, and to prevent debris from fouling valve
operation. An inlet ball valve and a section of clear pipe
and union for each outlet are provided for a complete
assembly that is easy to maintain and monitor. Ideal
valve location is at the high point in the system. Refer to
Automatic Distributing Valve Assemblies (NTP-VA-1) for
more information.
Standard Models
V4402A, V4403A, V4404A, V4605A, V4606A, V6402A, V6403A,
V6404A, V6605A, V6606A.
Nomenclature
Submittal
Data Sheet
Side View
ball valve
elbow
Top View
coupling
clear pipe
distributing valve
union
Bottom View
elbows
Specifications
Materials of Construction
All Fittings: Sch. 40 PVC per ASTMspecification
Unions: Sch. 80 PVCper ASTMspecification
Ball Valve: Sch. 40 PVCper ASTMspecification
Clear Pipe: Sch. 40 PVCper ASTMspecification
V4XXX Distributing Valves: High-strength noncorrosive ABSpolymer and stainless steel
V6XXX Distributing Valves: High-strength noncorrosive ABSpolymer, stainless steel, and die cast metal
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 1 of 2
Applications
Automatic Distributing Valve Assemblies are used to pressurize
multiple zone distribution systems including textile filters, sand
filters and drainfields.
V
Indicates assembly
Model series:
44 = 4400 series (2-4 outlets)
46 = 4600 series (5-6 outlets)
64 = 6400 series (2-4 outlets)
66 = 6600 series (5-6 outlets)
Distributing valve
Number of active outlets
A
Distributing Valves (continued)
Flow (gpm)
He
a
d
L
o
s
s
T
h
r
o
u
g
h
A
s
s
e
m
b
l
y
(
f
t
.
)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0
5
10
15
20
25
30
35
V4400A
V6600A
V6400A
V4600A
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 2 of 2
Model Inlet Size (in.) Outlets Size (in.) Flow range (gpm) Max Head (ft.) Min. Enclosure
V4402A 1.25 1.25 10 - 40 170 VB1217
V4403A 1.25 1.25 10 - 40 170 VB1217
V4404A 1.25 1.25 10 - 40 170 VB1217
V4605A 1.25 1.25 10 - 25 170 RR2418
V4606A 1.25 1.25 10 - 25 170 RR2418
V6402A 1.5 1.5 15 - 100 345 RR2418
V6403A 1.5 1.5 15 - 100 345 RR2418
V6404A 1.5 1.5 15 - 100 345 RR2418
V6605A 1.5 1.5 15 - 100 345 RR2418
V6606A 1.5 1.5 15 - 100 345 RR2418
QuickSnap™ Orifice Shield Instructions
These instructions are for use with GeoMat™ Leaching System
Put a 2 x 6 that is at least as long as the pipe
on the ground or saw horses for use as a
level surface.
Place the pipe on the 2 x 6 with one shield
at each end of the pipe to secure it from
rotation during orifice and shield
orientation marking, be sure to remove
these shields when pipe is complete.
Measure and mark position of orifice on the
top of the pipe, per design specification.
Snap a shield on directly beneath each
orifice mark.
Mark the edge of each shield on at least one
side, as shown, and mark the exact top of
the pipe. This marking will allow the shield
to be properly oriented.
Questions? Call Geomatrix Systems at 860-510-0730
QuickSnap and GeoMat are trademarks of Geomatrix Systems, LLC Old Saybrook, CT – QSINST 5/19
Drill pipe per design specification.
Be sure to clean shavings/debris out of hole.
Rotate shields 180 degrees to cover orifice.
The edge of the shield should be aligned
with the edge mark as shown. The shield
should be rotated such that the flat surface
and the top orientation mark are both in the
12 O’clock position. This should result in
the shield positioned directly over the
orifice.
Generously apply Premier brand One-Step
Pipe Cement Multi-Purpose Clear, or equal,
to the surfaces where the shield and pipe
meet. The use of a foam brush will help with
this; the round applicator is not effective.
Let glue sufficiently dry before rough
handling and/or sliding into GeoMat.
Note the above steps are intended to prevent shields
from moving around during insertion into GeoMat;
not for rough handling. When better adhesion is
necessary, for transportation, etc. use PVC primer
and solvent cement on all surfaces where the pipe
and shield touch and then snap on shield in correct
location.
Item#
SEK- Orenco® Flushing Assemblies
Flushing Assemblies
Orenco® flushing assemblies provide easy
access for lateral maintenance. Flushing
assembly kits include a PVC sweep with ball
valve and a polyethylene valve box enclosure.
Orenco® flushing assemblies are available in the
following sizes:
• 1” diameter
• 1.25” diameter
• 1.5” diameter
• 2" diameter
Valve Boxes
Orenco® valve boxes are used to provide access
to flushing assemblies. Constructed of
polyethylene.
Valve Box, 7-in. diameter round enclosure
Note: Kits include VB7 valve box enclosure.
(719) 395-6764
Fax: (719) 395-3727
28005 County Road 317
P.O. Box 925
Buena Vista, CO 81211
Water &
Wastewater
• Systems
• Products
• Service Website: http://valleyprecast.com/
Email: frontdesk@valleyprecast.com