Loading...
HomeMy WebLinkAboutStructural CalculationsStructu ral Ca lculations For Timberlyne Bob Burkett Project Number: BBU0524 1159 County Road 237 silt, co 81652 March Loth,2025 Frame Engineering, LLC 2500 W. 49th Street, Suite 224 Sioux Falls, SD 57L05 (6Os) 220-2447 *\e $s SealPact 2025-03-11 10:00:03 EST Click seal or scan QR Code for verification; otheMise not valid.#ffiffi 1 Building Code: 201,5 lnternational Residential Code Roof Dead Load: 10 PSF Ground Snow Load: 52 PSF Roof Snow/Live Load: 40 PSF = 52 psf x 0.7 x 1.1 Floor Dead Load: 10 PSF Floor Live Load: 40 PSF Wind Speed (Ult.): 115 MPH Building Enclosure: Fully Enclosed Exposure: C Seismic Design Category: B lmportance Category: ll Soil Bearing Capacity: 1500 PSF (Assumed) Frost Depth: 36 lnches (Elevation < 5900') Garfield County 2 BUILDING DEPARTMENT 108 Eighth Sh'eet, Suite 401, Glenwood Springs, CO 81601 Tel: (970) 945-8212 BUILDING REQUIREMENTS RESIDENTIAL PROJECTS Effective: October 15,2018 (ond os updated on lune 12,2023) Reference Building Codes: Setbacks: Snowload: (Measured at Roof, not Ground!) Roof Load (Wood): Seismic Design Category: Weathering Probability for Concrete: Termite I nfestation Probability: Wind Speed: Wind Exposure: Frost Depth: Winter Design Temperature: Air Freezing Index: lce Barrier Underlayment: Mean AnnualTemp: lnsulation: 2015 tRC, tBC, lFC,lFGC, lMC, IPC 2018 tECC Check subdivision plat and/or Garfield Co. zone district regulations for setback requirements 40 PSF Up to 7000 ft. elevation 50 PSF TOOL - 8000 ft. elevation 75 PSF 8001 - 9000 ft. elevation 100 PSF 9001-10000 ft. elevation Load Duration = 1.0 B or C - See lRC, Figure R301.2 (2) Severe None to slight 115 mph (Ultimate Design) B or C - See Section R301.2.1.4) 36 inches - up to 8000 ft. elevation 42 inches - Over 8000 ft. elevation Minus 2-Up to 7000 ft. elevation Minus 16 - Over 7000 ft. elevation 2500' F Days - Up to 7000 ft. elevation 7000+ ft. elevation -As determined by Building Official Required Variable Minimum R-Volues per 2078 IECC, Toble 402.7.2* . Ceilings/Roofs = R-49 . Exterior Walls = R-20 (or R-13 cavity + R-5 sheathing) . Floors = R-30 (or enough to fill joist cavity w/R-19 min.) . Basement & Crawl Space Walls = R-L5 cont./R-19 cavity . Heated Slab Perimeter = R-10 from top of slab and R-5 min. under entire slab. . Unheated Slab Perimeter = R-10 from top of slab to 24" below grade. *lnylotion Notep: 1. R-Values shown obove ore for wood-frome construction. See Table 402.2.6 for steel-frome buildings. 2. Crawl Spaces - Floors over vented crawl spaces must be insulated with R-30 or enough to fill the entire cavity. Vents sholl be locoted below the bottom of the floor joist per IRC, R-408.1. An alternative to insuloting floors, crawl spoce walls ore ollowed to be insulated if crawl space is not vented to outdoors ond meets the requirements of lRC, Sec. R408.3. 3. Windows/Doors: U =.30;Skylights: U =.55 3 Address: 1 159 County Road 237 Silt, Colorado 81652 Wind ASCE Hazards Report Standard: ASCE/SEI7-10 Risk Category: ll Soil Class: D - Stiff Soil Latitude: 39.577344 Longitude :, -107'67 51 12 Elevation : 5820.7 007 64126592 tt (NAVD 88) (_nti! rlt:' tilrScllL., I BLEbellI ?l ta) +d "3' .tt' 1 E r'ili 5ile llEs{ , ',' t '|i ..; { -irxll /ilt3j tr; cia _lri itLlEi c Results: Wind Speed 10-year MRI 25-year MRI SO-year MRI 100-year MRI Data Source: Date Accessed 115 Vmph 76 Vmph 84 Vmph 90 Vmph 96 Vmph ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, ',RgSpS6arBg Wgta of March 12,2014 Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7o/o probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2 https://ascehazardlool.orq/Page 1 of3 Tue Feb 252025 ASCE AN,IESICAN SOCIEIY OF CMt ENGINTHS Seismic 4 Site SoilClass: Results: Ss: Sr: Ful Fui Sr,,rs : Su.' : So" : D - Stiff Soil 0.307 0.08 1.554 2.4 0.478 0j92 0.319 Sor : Tr- : PGA: PGA v Fpcn l" : 0.128 4 0.179 0.258 1.442 1 123 S"(g) vs T(s) U9&ffirynse snectrum 0.35 0.30 8.25 0.20 0.15 0-10 0.05 Design Response Spectrum 0-{5 0_4t! 0.35 0-30 0.25 0.20 0.r5 0,10 0.05 123 S"(g) vs T(s) 4 4 DataAccessed: Tue Feb 252025 Date Source: USGS Seismic Design Maps based on ASCE/SEI7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASGE/SEI 7-10 Ch.21are available from USGS. f,5 https ://ascehazardtool.orq/Page 2 of 3 Tue Feb 25 2425 ASKE AMFRICAN SOCIETY OF CMt ENGINEBS Snow 5 Results Mapped Elevation Data Source: Date Accessed: 5820.7 ft ASCE/SEl 7-10, Fig.7-1 Tue Feb 25 2025 ln "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale. Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (S0-year mean recurrence interval). Values provided are ground snow loads. ln areas designated "case study required," extreme localvariations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered. Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other. The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained bythird party providers; or has been exirapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard. ln using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool. https://ascehazardtool.orq/Page 3 of 3 Tue Feb 25 2025 6MecaWind v2520 Deve1opedbyMecaEnterpri-sesrnc.,@,Copyrighto2025 Calculations Prepared by: Date: Feb 25, 2025 File Location: Current Project Not Saved General: Reference Abbreviations: T: Table, h/i nd Load Standard Exposure Classification Structure Type MWFRS Anal-ysis Method Dynamj-c Type of Structure S.impfe Diaphragm Building Altitude above Sea Level I4WFRS Pressure Elevacions Override Directlonality Factor override Minimum Pressure Building has a flexible diaphragm Building: Roof Type Hefp on Building Roof Type Building Width Ridge Height Pit-ch of Roof Overhang Configuration Highesl Opening Efevation Mean Roof Height Override GCoi value Exposure Constants [T:26.9-1] : a = 3-s Gust-speed exponent a : Reciprocaf of q cx^ : Mean hourly Wind-Speed Exponent c = Turbul-ence Intensity Factor Overhang F: Figure, ASCE 7-10 c Building ch28Pr1 Rigid Fal- se 0.000 fr Mean Ht Fa.l- s e False Fa.L se Equation, S: Section Basic Wind Speed Risk Category Basis for Wind Pressures C&C Analysis Method Advanced Options Base Reactions Output Type Base Elevation Of Structure Topographic Effects Override Gust Factor Number of Stories for Bui.Lding BuiLding is Light Frame Construction 115.0 mph II ASD ch30Pt1 True None 0.0000 ft None False 2 False Roof Help W Pitch OH Z1 Ht*". GCp; o : Gab]ed : Hefp : 40.0000 fr : Zf,.JJJ IL: 8.0 :12: AIf Qverhang: 0.0000 fr = ao.oo/ rL : Fafse Enc.L Iscust: Enclosure Cfassification Custom Roof Building Length Eave Height Slope of Roof Parapet Override Mean Roof Height Override Roof Area = Encl-osed : FaIse : 48.0000 fr : 12.000 fr = 33.69 " : None : FaLse : False srd OHType OH Slope Qr a Inputs:: Overhangs on al]- sides are the same : Type of Roof Wal1 Intersections : Overhang of Roof Beyond Wall zq : Nominal Ht of Boundary Layer b : 3 sec gust speed factor b. : Mean hourly windspeed Exponent € : Integraf Length Scafe Exponent Kt, : 2.0L' (h",,a"/zs)"orot ,r.r-t Ka : Directionality FacLor 1,26.6-1 LE : ASD Load Factol 9.500 0.105 0.154 0.200 = 18.667 ft: 1.000: 10. lB: 15.35 psf 900.000 fr 1.000 0.650 0.2000 True overhang 2.000 ft Main Wind Force Resisting System (MWERS) Calcul-ations Per Ch 28 Pt 1 h = Mean structure heiqht K,t = No Topographic Feature GCpi: t Internal Press Coef r,zo.r:-r er = O, 00256.Kh'K".'Ka'V2'LFe,:r.:-r 0 0 0 889 85 60 Slope of Roof 0, 00255.Kh.K,r.Ko.V2.LEa,zr.:-r Min(0.1.8, 0.4.h) Max (ar, 0.04.8, 3 ft 10.9 ml ) 2 x a dimension used for E zones 33.69 ' 15.35 psf 4.000 fr 4 .000 fr 8.000 ft 7 o Notes l p * ilt3 Lord Cme I Load Case 3 wind Pressules per ch 28 Pt 1 lTransverse] Al1 wind sures include a Load Sactor of 0.5 : [Waf ]s and Roof ] q1,. (GCo;GC"t.) [E:28,4-2] IParapet] qo. (GCo.) IE:28.4-1] GCpi : Internaf Buildinq Pressure GCot : Externaf Pressure coefficient from Ch 28 Pt 1 OH : Overhang, End = Encl of Building, Side = Side of BuiTding, Bottom = BaLtom of Overhang per Section 28.3.3 the pressure on 'Bottom' is combined with Pressure on Top of Overhang GC^"GCprt P *GCpr psf P -GCei psf, Building surface 0.180 5.83 11.3610.560 0 .2r0 0.180 a .46 5.992 -3. B4-0.430 0.180 -9.363 -0.370 0.180 -a at -2 .924 0.690 0 - 180 7.83 13.351E 0.180 1 ?O 6 .9r2E0 .210 -0.530 0.180 -10.90 -5 .313E -10.13 -4.604E-0.480 0.180 0.140 0.180 -0.5r I ql1T 0.053 0.180 -r.96 3.572T -4.41 1.113T-0.108 0.180 -0.093 0. rB0 -4-18 1.344T 3.220 .270 10.002 OH End r0.00 1,0 .7 4 r0 .'t 42 c)H End Bottom 0.700 0.21"0 10.00 o .45 5.992 OH Side 1.0 .7 A 'l-0 .1 42 OH Side Bottom 0.700 10.00 -0.430 +0.00 -6.60 -6. 603 OH End -0.430 +0.00 -9.36 -3.843 OH Side 10.00 4.r4 4.L42E OH End 0 .2'10 0.700 10.00 ro .-14 70 .142E OH End Bottom 5. 912E oH Side 0.270 10.00 1.38 0.700 r0.00 L0 .14 1"0 .1 42E OH Side Bottom -0.530 +0.00 -8.13 -8.133E OH End r0 .'14 \0 .7 q3E OH End Bottom 0.700 r0.00 -0.530 10.00 -10.90 -5 .313E OH Side r0.143E OH Side Bottom 0.700 10.00 1"0 .'l 4 10.00 0.81 0.812T OH End 0.053 0.700 +0.00 7A .14 ro .142T OH End Bottom 2T oH Side 0.053 10.00 -r ,96 10.00 r0 .14 1"0 .1 42T oH Side Bottom 0.700 -0.108 10.00 -1-65 -1.653T oH End -4.4r 1.113T OH Side -0.108 r0.00 I Lord Cerc I L6rd Cme { wind Preaaures pea Ch 28 Ft 1 llongitudinal] All wind include a Load Factor of 0.6 Building surf,ace GCpr GCrtt p +GCprpsf P -GCpipsf 1 -0.450 0.180 -9 .61 -4.L4 2 -0.690 0.180 -13.35 -7.83 3 -0.370 0.180 -8 .44 -2 .92 4 -0.450 0.180 -9 .67 -4.L4 5 0.400 0.180 3.38 8. 90 6 -n 2qn 0.180 -1 .2r -r .69 1E -0.480 0.180 -10.13 -4 .60 ZL -1.070 0.180 -19.18 -13.66 JE -0.530 0.180 -10 . 90 -5.37 4E -0.480 0.180 -10. t-3 -4 .60 5E 0. 610 0.180 6. 60 L2.12 6E -0.430 0.180 -9. 35 -3. B4 1T -0.113 0.180 -4 .49 1.04 2T -0.173 0.180 -5.41 0 ,L2 3T -0.093 0.180 -, 1Q L .34 4T 0.180 -4.49 1.04 5T 0.100 0.180 _1 a 1 4.30 6T -0.073 0.180 -3.88 1.65 2 oH End -0.690 t0,00 -10.59 -10.59 2 0H End Botton 0.700 +0.00 L0 .7 4 r0 .14 2 oH Side -0.690 10.00 -10.59 -10.59 2 oH Side Bottom 0.700 +0.00 L0 .7 4 10.74 3 OH End -0.370 10,00 -s.68 -s.68 3 oH Side -0.370 10.00 -5.58 -5.68 2E oH End -1.0 /0 t0.00 -L6,42 -16 .42 2E oH End Bottom 0.700 +0,00 r0 .14 r0 .14 2E OH Side -1 . 070 +0.00 -16 .42 -L6 .42 2E OH Side BoLtom 0.700 r0.00 L0 ,14 I0.74 3E oH End -0.530 +0.00 -8.13 -8.13 3E OH End Bottom 0.700 +0,00 L0 ,14 10.74 3E OH Side -0.530 10.00 -8.13 -B.13 3E OH Side Bottom 0.700 10.00 L0 .14 to .14 2T OH End -0.173 10,00 -2 .65 -2 .65 2T oH End Bottom 0.700 10.00 L0 .14 r0.74 2T OH Side -0.173 10.00 -2.65 -2.65 2T OH Side Bottom 0.700 r0.00 r0.74 L0 .-1 4 3T OH End -0.093 10.00 -L .42 -I.42 3T OH Side -0.093 10.00 -1 A')-7 .42 I Notes p Walls h : Mean structure height K,r : No Topographic Feature GC"i : t Int.ernaf Press Coef r,zo.r:-r 9r : 9. 00256'Kn'11,.'Ka'V2'LF;,27.r-1 ar = Min(0,1'B, 0.4'h) 3 2 -.? 2 .:2 :J 2 I 2 2 3 2 1 3 2 3 Gable Roof 27"< O <-45' : [walLs and Roof] q1. (GCot-GCp;,) [E:28.4-2] IParapet] qo. (GCo,.) IE:28.4-7] GCpi = Internaf BuiTding Pressure GCpr = Externaf Pressure coefficient from Ch 28 Pt 1. OH : Overhang, End : End of Building, Side : Side of Buildinql Bot,f,om : Bottom of Ovethang per Section 28.3.3 tile pressure on 'Bottom' is combined with Pressure on Top of Overhang Components and Cladding (C&C) Wind Loads per Ch 30 Pt 1 Roof & WalI { { 18.667 fr 1.000 +0.18 15.35 psf 4.000 fr Ku : 2.01' (hq'"a./Zq)''orrr rr.r-, Ka = Directionality Factor 1,26.6-1 LF = ASD Load Eactor e : Sfope of Roof a: Max(a,, 0.04.B, 3 ft [0.9 m]) 0.889 0.85 0.60 33.69 ' 4.000 ft c&c wind Roof & wall Detailed Per ch 30 Pt 1 AlL wind sure6 a Load Factor of 0.6 GCpe +Press <?n 2 ) width Area a : Down (+) External Coefticient = qo. IGC"a-GCpt] [t,to.t-t] = Pressure Acting Towaf,d Surface : C&C Min Pressure : 9.60 pst : width of Component : Span , width : Max [Min (. 7.8,. 4.h),. 04.8, 3],,so.n-2, : Internaf Coef ,,ta.,+' GCP, -Press Zone Span 1/3 RuIe a Reference = UpTitt (-) Externaf Coefficient = qh. IGCp,-GCpt] [,,w.n-t]: Pressure Actinq Away from Surface : ApplicabTe Zone per Figure : Span of Component = width Tinited to Span/3 : Max [Min (, 1,8, . 4.h), . 04.8, 3] p,3c.J-l : Applicable Reference from standard Roof Not Shown Descri.ption Zone width ft Span ft Area fl-2 1/3 RuIe R€ference a ft GCpi Gcr.Gq"P* psf Po" psf, Purlins 2 4.0000 12.0000 48.00 No E:30.4-2C 4 +0.18 0.83 -1.06 15.53 -19.09 Bents 2.12.0000 16.0000 L92.00 No Fz30.4-2C 4 +0.18 0.80 -1.00 15.04 -18.11 SIPS 4 1.0000 10.0000 33.33 Yes F:30.4-1 4 +0.18 0.91 -1.01 16 .69 -L8.23 Columns 4 5.0000 10.0000 50.00 No F:30.4-1 4 10.18 0.88 _n oa 76.22 -L1 .1 5 0I Drifting on Lower Roofs: Drift Weight: y : 0'L3pn * L4 (N ot to exceed 30 Psf) y:0.L3x52*14 y = 27psf Drift Height (lean-to): no:(0.+zffi"f,+r)- t u ho = (0.+3 52+70 - 1.5 ha = l.B ft Drift Load (lean-to): Pa:ha*T pa:L.Bftx2Lpsf Pa = 3BPsf Drift Width (lean-to) w=4*ha w=4xt.Bft w = 7.Zft 11 MPANY: ECT Timberlyne DATE:3/Lo/202s Bob Burkett DESIGNER:AS silt, co PROJECT #:BBUO524 Purlins Dead Load: Snow/Live Load: Windr: Wind2: 10 PSF 40 PSF 15.53 PSF -19.09 PSF Load Combinations D+L: 50 PSF D + 0.6Wr: 19.3 PSF D + 0.5W2: -1.5 PSF D+0.75(0.5Wt)+0.751: 47 PSF D+0.75(0.6Wr)+0.751: 31.4 PSF 0.6D + 0.6W1: 15.3 PSF 0.6D + 0.5W2: -5.5 PSF Roof Bents Dead Load: 10 PSF Snow/Live Load: 40 PSF Wind.: 15.04 PSF Wind2: -L8.11 PSF Load Combinations D+L: 50 PSF D + 0.6W1: 19 PSF D + 0.5W2: -0.9 PSF D+0.75(0.5Wr)+0.751: 46.8 PSF D+0.75(0.5Wr)+0.75[: 3L.9 PSF 0.5D + 0.6W1: 15 PSF 0.6D + 0.5Wr: -4.9 PSF Floor Load Dead Load: 10 PSF Live Load: 40 PSF Load Combinations D+L: 50 PSF SlPs Dead Load: Snow/Live Load: Windl: Wind2: N/A PSF N/A PSF 16.69 PSF -18.23 PSF Load Combinations Wr: 16.69 PSF Wz: -18.23 PSF Columns Dead Load: N/A PSF Snow/Live Load: N/A PSF Windr: 16.22 PSF Wind2: -17.75 PSF Load Combinations Wr: 15.22 PSF Wz: -17.75 PSF 21 Lateral Analvsis Per SIP Manufacturer (r l r,ll/rl /' ir, i ,, ,,t,i ,ii l, li ' i , I (( l.i //,\rill(r i rji' I iit jii,r''i,,',,11,:t ",' ]i :lrli)l ll,l )r i !1. ' ir ilrLi' 1,,,\r ; ii, l.,l ,' , lii ,,lij I i ll . iiti l\ii jrlli ii ti'iiiti l, .,:,i. t t|),:i :,rri.,;', iirr, I i:i iriliil(iii ,r.riil I li ,/,. I'l !tl.!(,rt\l lI rjil\l ('r[l Bentteg Software licensed to Frame Engineering, LLC CONNECTED User: Alexander Smith Job No BBUO524 Sheet No Rev 13 Part JobTitle Bob Burkett Ref By oate2l2't2o2' chd Client Timberlyne File Bob Burkett - BBU0524.S Datemme 2S-F eb-2025 09:1 8 Job I tion Project lD Proiect Name Number of Nodes 5 Hiqhest Node 5 Number of Elements 5 Hiqhest Beam 5 Number of Basic Load Cases 5 Number of Combination Load Cases 10 are data for load Nodes Engineer Checked Approved Name Date:212512025 SPACE FRAMEStructure Ail The Whole Structure Tvpe L/c Name Primary 1 DEAD LOAD Combination 2 D+W2+L Primary 3 SNOWLIVE Combination 5 D+L Combination o D+S Combination B D+W1 Combination o D+W2 Combination 10 D+W1+L Combination 11 0.6D+0.6W1 Combination 12 0.6D+0.6W2 Primary 13 SNOW2 Combination 14 D+S2 Combination 15 D+W1+L2 Node x (in) Y (in) z (in) 1 0 0 0 2 51.000 34.000 0 3 96.000 64.000 0 4 141 .000 34.000 0 5 192.000 0 0 Print Time/Date: 2510212025 09:19 STAAD.PTo CONNECT Edition 22.08.00.175 Print Run 1 of 6 Bentteg Software licensed to Frame Engineering, LLC CONNECTED lJser: Alexander Smith Job No BBU0524 Sheet No Rev 14 Part JobTitle Bob Burkeit Ref By DaL2l2Sl2O2S chd Client Timberlyne File Bob Burkett - BBU0524.S Datemme 2S-F eb_2025 09:1 I Beams Section Properties Materials Beam Node A Node B Length (in) p idegrees) 1 1 2 61.294 2 0 2 2 J 54.083 2 0 J 3 4 54.083 2 0 4 4 5 61.294 2 0 5 2 4 90.000 1 0 Prop Section Area (rn-) lvv (tn ) lu (ino) J (ino) Material I RDPN N2 8XB BM 64.000 341.333 341.333 0 RDPN N2 BX{ 2 RDPN N2 8X1O BM 80.000 426.667 666.667 0 RDPN N2 BX, Mat Name E (kip/in'z) Density (kip/in3) o, U"F) 1 STEEL 29E+3 0.300 0.000283 6.5E -6 2 CONCRETE 3. I 5E+3 0.170 8.68e-05 5.5E -6 3 ALUMINUM 1 0E+3 0.330 9.8e-05 12.8E -6 4 STAINLESSSTEEL 28E+3 0.300 0.000283 9.9E -6 A STEEL 36 KSI 29E+3 0.300 0.000283 6.5E -6 o STEEL 50 KSI 29E+3 0.300 0.000283 6.5E -6 7 STEEL 275 NMM2 29.7E+3 0_300 0.000 6.67E -6 I STEEL 355 NMM2 29.7E+3 0.300 0.000 6.67E -6 I Q235 29.9E+3 0.300 0.000 6.67E -6 10 Q345 29.98+3 0.300 0.000 6.67E -6 11 Q355 29.9E+3 0.300 0.000 6.67E -6 12 Q390 29.9E+3 0.300 0.000 6.67E -6 13 Q420 29.9E+3 0.300 0.000 6.67E -6 14 Q460 29.9E+3 0.300 0.000 6.67E -6 15 DFLR N1 6XB BM \^1.600 0.150 0.000 5.5E -6 16 DFLR N1 6X6 BM \^1.600 0.150 0.000 5.5E -6 17 DFLR N1 8X18 BM 1.600 0.150 0.000 5.5E -6 1B DFLR_N1-8X1 2-BM_1.600 0.150 0.000 5.5E -6 19 DFLR N1 BX8 BM \^1.600 0.150 0.000 5.5E -6 20 DFLR N1 8X1O BM 0 0.1 50 0.000 5.5E -6 21 RDPN N2 BX8 BM 0 0.1 50 0.000 5.5E -6 22 RDPN N2 8X1O BM 0 0.1 50 0.000 5.5E -6 23 RDPN N2 8X12 BM 0.900 0.1 50 0.000 5.5E -6 24 RDPN N2 8X.14 BM 0.900 0.1 50 0.000 5.5E -6 25 GLT-24F.V4 DFIDF 0 0 0 0.000 Print Time/Date: 2510212025 09119 STAAD.PTo CONNECT Edition 22.08.00.1 75 Print Run 2 of 6 Bentteg Software licensed to Frame Engineering, LLC CONNECTED User: AI€xander Smith Job No BBU0524 Sheet No Rev 15 Part Jobntle Bob Burkett Ref By DateZl2Sl2O2S chd Client Timberlyne File Bob Burkett - BBU0524.S Date/nme 2S_Feb-2025 09:18 Supports Releases ends not Primarv Load Gases Gombination Load Gases Node X (kip/in) Y (kip/in) z (kip/in) rX (kip-fUdeg) rY (kip-fVdeg) rZ (kip-fUdeg) I Fixed Fixed Fixed Fixed Fixed Fixed v z rx ry fzBeamNodex Pin Pin PinI1FixedFixedSlide Pin Pin23FixedFixedSlidePin Pin Pin33FixedFixedSlidePin Pin Pin45FixedFixedSlidePin Pin Pin52FixedFixedSlidePin Pin Pin Pin54FixedFixedSlide Number Name Type 1 DEAD LOAD Dead 3 SNOW/LIVE Snow 4 WIND Wind 7 WIND 2 Wind 13 SNOW2 Snow Comb.Gombination UC Name Primary Primary L/C Name Factor 2 D+W2+L 1 DEAD LOAD 1.00 3 SNOW/LIVE 0.75 7 WIND 2 0.45 5 D+L 1 DEAD LOAD 1.00 2 D+W2+L 1.00 6 D+S 1 DEAD LOAD 1.00 3 SNOWLIVE 1.00 I D+W1 1 DEAD LOAD 1.00 4 WIND 0.60 I D+W2 1 DEAD LOAD 1.00 7 WIND 2 0.60 10 D+W1+L 1 DEAD LOAD 1.00 3 SNOW/LIVE 0.75 4 WIND 0.45 11 0.6D+0.6W1 1 DEAD LOAD 0.60 Print Time/Date: 25l0212025 09:19 STAAD.PTo CONNECT Edition 22.08.00.'175 Print Run 3 of 6 Bentteg Software licensed to Frame Engineering, LLc CONNECTED User: Alexander Smith Job No BBU0524 Sheet No Rev 16 Part Jobritle Bob Burkett Ref By Dut 2l2Sl2O2S chd client Timberlyne File 3e5 Burkett - BBU0524.S Date/rime 2E-F eb_2025 0g:1 8 Gombination Load Cases Gont... Load Generators There is no data of this type. 1 DEAD LOAD : Beam Loads 1 DEAD LOAD : Selfweiqht 3 SNOWLIVE : Beam Loads 13 SNOW2 : Beam Loads Comb.Combination UC Name Primary Primary UC Name Factor 4 WIND 0.60 12 0.6D+0.6W2 1 DEAD LOAD 0.60 7 WIND 2 0.60 14 D+S2 1 DEAD LOAD 1.00 13 SNOW2 1.00 15 D+W1+L2 ,|DEAD LOAD 1.00 4 WIND 0.45 13 SNOW2 0.75 Beam Type Direction Fa Da (in) Fb Db Ecc. (in) I uNt tbf/ft GY -1 20.000 2 uNt tbf/ft GY -1 20.000 3 uNt tbf/ft GY -120.000 4 uNt tbf/ft GY -120.000 Factor g -1.000 ALL Beam Type Direction FA Da (in) Fb Db Ecc. (in) I uNt tbf/ft GY -480.000 2 uNt tbf/ft GY -480.000 J uNt lbf/ft GY 480.000 4 uNt tbf/ft GY 480.000 Beam Tvpe Direction Fa Da (in) Fb Db Ecc. (in) 1 uNt tbf/ft GY -480.000 2 uNt tbilft GY -480.000 Print Time/Date: 2510212025 09119 STAAD.PTo CONNECT Edition 22.08.00. 175 Print Run 4 of 6 Bentteg Software licensad to Frams Engin€ering, LLC CONNECTEO LJser: Alexander Smith Job No BBUO524 Sheet No Rev 17 Part JobTitle Bob Burkett Ref By oate2l2'l2}2' chd clisnt Timberlyne File Bob Burkeft - BBU0524.S Date/Time 2S-Feb-2025 09:18 ., b,:, 3 2 5 ,l 1 4 A A YL4 Lord I Whole Structure Beam Displacement Detail Summarv of an z (in) Resultant (in) Beam UC d (in)(in) x Y (in) 61.294 0.312 -0.476 0 0.569Max X 1 14:D+S2 {.009 -0.019 0 0.021Min X 4 6:D+S 30.647 0.309 0.459 0 0.553Max Y 3 13:SNOW2 54.083 o.312 -0.476 0 0.569Min Y I 14:D+S2 61.294 0 0 0MaxZ11:DEAD LOAD 0 0 0 0 0Min Z 1 1:DEAD LOAD 0 0 0.312 -o.476 0 0.569Max Rst 1 14:D+S2 61.294 Print Tlme/Date: 2510212025 O9t'19 STMD.PTo CONNECT Edition 22.08.00.175 Print Run 5 of 6 Bentteg Software licensed to Frame Engineering, LLc CONNECTED Usen Alexander Smith Job No BBUO524 Sheet No Rev 18 Part Job]ltle Bob Burkett Ref By DatE2l2St2O2S chd Client Timberlyne File Bob Burkett - BBU0524.S Datemme 2S_Feb_2025 09:18 Beam Force Detail Summarv Sign convention as diagrams:- positive above line, negative betow line except Fx where positive is compression. Distance d is given from beam end A Axial Shear Torsion Bending Beam L/e d (in) Fx (kip) Fy (kip) Fz (kip) Mx (kip]n) My (kip-in) Mz (kip-in) Max Fx 1 6:D+S 0 8.788 1.285 0 0 0 0 Min Fx A 12:0.6D+0.6W1 0 -o.527 0.025 0 0 0 0 Max Fy 1 14:D+32 0 6.O22 1.743 0 0 0 0 Min FV 2 14:D+S2 54.083 0.392 -1.648 -0 -0 -0 -0 MaxFz 1 1:DEAD LOAD 0 1.975 0.280 0 0 0 0 Min Fz 1 1:DEAD LOAD 0 1.975 0.280 0 0 0 0 Max Mx 1 1:DEAD LOAD U 1.975 0.280 0 0 0 0 Min Mx 1 1:DEAD LOAD 0 1.975 0.280 0 0 0 0 Max My 1 1:DEAD LOAD 0 1.975 0.280 0 0 0 0 Min My 1 1:DEAD LOAD 0 1.975 o.280 0 0 0 0 Max Mz 3 14'.D+52 54.083 2.006 -o.774 -0 -0 -0 28.256 Min Mz 1 14:D+52 42.906 4.804 -0.083 0 0 0 '35.466 Reaction Summary Utilization Ratio Horizontal Vertical Horizontal Moment Node L/C FX (kip) FY (kip) FZ (kip) MX (kip-in) MY (kip-in) MZ (kip-in) Max FX 1 6:D+S 6.599 5.944 0 0 0 0 Min FX 5 6:D+S .6.599 5.944 0 0 0 0 Max FY 1 6:D+S 6.599 5.944 0 0 0 0 Min FY 1 12:0.6D+0.6W1 -0.084 -o.249 0 0 0 0 MaxFZ 1 1:DEAD LOAD 't.488 1.329 0 0 0 0 Min FZ 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Max MX 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Min MX 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Max MY 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Min MY 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Max MZ 1 1:DEAD LOAD 1.488 1.325 0 0 0 0 Min MZ 1 1:DEAD LOAD 1.488 1.329 0 0 0 0 Beam Analysis Property Design Property Actual Ratio Allowablr I n"tio Ratio (Act./Allow.) Clause UC Ax (in2) lz (tn ) ly (ino) lx (ino) 1 RDPN Ni RDPN Ni 0.503 1.000 0.503 80.000 666.670 426-670 1.32E+3 2 RDPN Ni RDPN N2 o.475 1.000 0.475 80.000 666.670 426.670 1.32E+3 3 RDPN Ni RDPN N2 o.374 1.000 0.374 80.000 666.670 426.670 1.32E+3 4 RDPN N2 RDPN Ni 0.393 1.000 0.393 80.000 666.670 426.670 1.32E+3 5 RDPN Ni RDPN N2 0.195 1.000 0.195 64.000 341.330 341.330 500.668 Print Time/Date: 2510212025 09:19 STAAD.PTo CONNECT Edition 22.08.00.175 Print Run 6 of 6 Project Title: Engineer: Project lD: Project Descr: 19 Wood Beam Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Purlins CODE REFEREA'CES Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set:ASCE 7-16 Material Properties Analysis Method : Allowable Stress Design Load Combination : ASCE 7-16 Wood Species : Red Pine Wood Grade : No.2 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fb+ Fb- Fc- Fc- Fv Ft 575 psi 575 psi 375 psi 440 psi 1 30 psi 300 psi E : Modulus of Elasticity Ebend- xx Eminbend - xx 900ksi 330ksiPrll Perp Density 27.47pd 6.0 x 8.o Span=11.50ft 2 App lied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading UniformLoad:D=0.010, Lr=0.020, S=0.040, W=0.01550ksf, TributaryWidth=4.0ft DES'G'V SUMMARY Maximum Bending Stress Ratio Section used for this span 0.980 1 6.0 x 8.0 648.30psi 661.25psi Maximum Shear Stress Ratio Section used for this span fv: Actual F'v Load Combination 0.224 :1 6.0 x 8.0 33.47 psi 149.50 psi fb: Actual F'b Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transieni Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection +D+S +D+S 5.750ft Span # 1 Location of maximum on span Span # where maximum occurs 0.000 ft Span # 1 0.275 in Ratio = 0 in Ratio = 0.359 in Ratio = 0 in Ratio = 502 >=360 Span 0 <360 nla 384 >=180 Span 0 <180 nla S Only +D+S Maximum Forces & Stresses for Load Combinations Design OK Load Combination Segment Length SPan # Max Stress Katros M V CDCM tvtomenr vatues shear values CLx CF Cfu Ci Ql M fb F'b V fv F'v D Only Length = 11.50 ft +D+Lr Length=11.50ft +D+S Length=11.50ft +D+0.7501r Length=11.50tt +D+0.750S 1 0.294 1 0.557 1 0.980 1 0.471 0.067 0.127 0.224 o.'t07 0.90 1.25 1.15 1.25 0.0 517.5 0.0 718.8 0.0 661.3 0.0 718.8 0.0 0.00 0.25 0.00 0.66 0.00 1.07 0.00 0.56 0.00 0.0 7.9 0.0 20.7 0.0 33.5 0.0 17.5 0.0 0.0 117.0 0.0 162.5 0.0 149.5 0.0 162.5 0.0 0.81 152.4 2,14 400.3 3.46 648.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1 .00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.80 338.3 Project Title: Engineer: Project lD: Project Descr: 20 Wood Beam Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Purlins Maximum Forces & Stresses for Load Combinations Load Combination Max slress Kailos Segment Length Span # M V cD cM C1 CLx cF Cfu ci cr M fb F'b VtuF'v MOmenI varues shear values Length=11.s0ft 1 0.793 0.181 +D+0.60W Length=11.50ft 1 0.291 0.066 +D+0.7501r+0.450W Length=11.50ft 1 0.462 0.105 +D+0.750S+0.450W Lensth = 1 1.50 ft 1 0.664 0.'152 +0.60D+0.60w Length = 1 1.50 ft 1 0.225 0.051 +0.60D Length=11.50ft I 0.099 0.023 Overal I Maximum Deflections 1.15 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 oo t.J 0.0 920.0 0.0 920.0 0.0 920.0 0.0 920.0 0.0 920.0 0.87 0.00 0.44 0.00 0.70 0.00 1.01 0.00 0.34 0.00 0.15 149.5 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 2.80 1.43 2.27 3.26 1.10 0.49 524.3 267.7 424.8 610.8 206.7 91.4 27.1 0.0 13.8 0.0 21.9 0.0 31.5 0.0 10.7 0.0 4.7 Span Load Combination Max. Localion Load Combination "-" Defl in Span Max. "+" Defl Location in Span 1 +D+S Vertical Reactions 0.3593 5.792 Support notation : Far left is #1 Values in KIPS 0.0000 0.000 Load Combination Support 1 Support 2 Max upwaro Trom all Loao uonalllons Max Upward from Load Combinations Max Upward from Load Cases D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.750Lr+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only S Only W Only 1:zU1 1.203 0.920 0.283 0.743 1.203 0.628 0.973 0.497 0.788 1 .133 0.383 0.170 0.460 0.920 0.357 1:/43 1.203 0.920 0.283 0.743 1.203 0.628 0.973 0.497 0.788 1.133 0.383 0.170 0.460 0.920 0.357 Project Title: Engineer: Project lD: Project Descr: 21 Wood Beam DESGRIPTION: Purlin @ Drift CODE REFEREIVCES Project File: Bob Burkett - BBU0524.eco Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set:ASCE 7-16 Material Analysis Method : Allowable Stress Design Load Combination : ASCE 7-16 Wood Species : Red Pine Wood Grade : No.2 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fb+ Fb- Fc - Prll Fc - Perp Fv Ft 575.0 psi 575.0 psi 375.0 psi 440.0 psi 130.0 psi 300.0 psi E : Modulus of Elasticity Ebend- xx 900.0ksi Eminbend - xx 330.0ksi Density 27.470pc1 6.0 x 8,0 Span=11.50ft 2 4pp!!sq!or9s Beam self weight NOT internally calculated and added UniformLoad: D=0.010, Lr=0.020, S=0.040, W=0.01550ksf, TributaryWidth=3.0ft Uniform Load : S = 0.020 ksf, Tributary Width = 3.0 ft, (Drift) DES'G'V SUMMARY Maximum Bending Stress Ratio = 0.984 1 Maximum Shear Stress Ratio Section used for this span 6.0 X 8.0 Section used for this span Service loads entered. Load Factors will be applied for calculations. fb: Actual F'b Load Combination Location of maximum on span = Span # where maximum occurs = Maxirnum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 650.92psi 661.25psi +D+S 5.750ft Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = 446 >=360 0 <360 382 >= 1 80 0<180 fv: Actual F'v Load Combination Location of maximum on span Span # where maximum occurs Span: 1:SOnly nla Span: 1 : +D+S nla @ 0.225 :1 6.0 x 8.0 33.60 psi 149.50 psi +D+S 0.000 ft Span # 1 0 0 .309 0 .36'l 0 Maximum Forces & Stresses for Load Combinations Toad Combination Max Stress Ratios Segment Lengih Span # M V CD CM C CLx D Only Length = 11.50ft +D+Lr Length=11.50ft +D+S Length=11.50ft +D+0.750Lr Length = 11.50ft Moment Values Shear Values Cfu ci cr M fb F'b VtuF'v 1 0.180 1 0.388 1 0.9B4 1 0.323 0.041 0.089 0.225 0.074 0.90 1.25 1.15 1.25 0.0 517.5 0.0 718.8 0.0 661.3 0.0 718.8 0.0 117.O 0.0 162.5 0.0 149.5 0.0 162.5 0.50 93.0 1.49 279.0 3.47 650.9 1.00 1.00 '1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.000 1.000 '1 .000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.24 232.5 0.00 0. 15 0.00 0.46 0.00 1.08 0.00 0.38 0.0 4.8 0.0 14.4 0.0 33.6 0.0 12.0 Project Title: Engineer: Project lD: Project Descr: 22 Wood Beam Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Purlin @ Drift Maximum Forces & Stresses for Load Gombinations Max Stress Ratios Segment Length SPan # M V CD CM Ct CLx lFomenfValues Shea-falues Cfu Ci C,M fb F'b VtuF'v +D+0.750S Length=11.50ft 1 0.773 0.177 +D+0.60W Length=11.50ft 1 0.195 0.045 +D+0.7501r+0.450W Length = 1 1.50 ft 1 0.323 0.074 +D+0.750S+0.450W Lensth = 1 1.50 ft 1 0.626 0.143 +0.60D+0.60w Lensth=11.50ft 1 0.155 0.035 +0.60D Length=11.50ft 1 0.061 0.0'14 Overall Maximum Deflections 00 00 00 00 00 00 00 00 00 00 00 00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.84 0.00 0.30 0.00 0.49 0.00 0.95 0.00 0.24 0.00 0.09 0.0 26.4 0.0 9.3 0.0 '15.3 0.0 29.8 0.0 7.3 0.0 2.9 0.0 149.5 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 1.15 1.60 1.60 1.60 1.60 1.60 1.00 1.00 '1 .00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.73 511.4 0.96 179.5 1.59 297.3 3.07 576.3 0.76 142.3 0.30 55.8 0.0 661.3 0.0 920.0 0.0 920.0 0.0 920.0 0.0 920.0 0.0 920.0 Span Load Combination Max. 'L" Defl Location LoadCombination in Span lvlax. "+" Defl Location in Span 1 +D+S Vertical Reactions 0.3608 5.792 0.0000 0.000 Support notation : Far left is #1 Values in KIPS Load Combination Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.750Lr+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only S Only W Only Support 1 Support 2 .208 1.208 1.208 1.035 0.173 0.518 1.208 0.431 0.949 0.333 0.552 1.069 0.264 0.104 0.345 1.035 0.267 1.208 1.035 0.173 0.518 1.208 0.431 0.949 0.333 0.552 1.069 0.264 0.104 0.345 1.035 0.267 Project Title: Engineer: Project lD: Project Descr: 23 Wood Beam Project File: Bob Burkett - BBU0524.ecO DESCRIPTION: Loft Joists CODE REFEREA'CES Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set: ASCE 7-16 Material Properties Analysis Method : Allowable Stress Design Load Combination : ASCE 7-16 Wood Species : Red Pine Wood Grade : No.2 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fb+ Fb- Fc - Prll Fc - Perp Fv Ft 575 psi 575 psi 375 psi 440 psi '130 psi 300 psi E : Modulus of Elasticity Ebend- xx Eminbend - xx Density 900ksi 330 ksi 27.47 pct 2.0 x 10.0 Span=11.50ft 2 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.010, L = 0.040 ksf, TributaryWidth = 1.333 ft DES'G'V SUMMARY Maximum Bending Stress Ratio Section used for this span 0.663 1 Maximum Shear Stress Ratio 2.0 X 10.0 Section used for this span @ 0.201 : 1 2.0 x 10.0 26.17 psi 130.00 psi +D+L 0.000 ft Span # 1 fb: Actual F'b Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 419.36psi 632.50psi fv: Actual F'v Load Combination Location of maximum on span Span # where maximum occurs +D+L 5.750ft Span # 1 0.141 in Ratio = 0 in Ratio = 0.186 in Ratio = 0 in Ratio = 980 >=360 0 <360 742>=180 0<180 Span nla Span nla L Only +D+L Maximum Forces & Stresses for Load Combinations Load Combination Max litress KaIros Segment Length SPan # M V CD CM c MOment values !rnear vatues CLx CF Cfu Ci c M fb F'b V fv F'vr D Only Length=11-50ft +D+L Length=11.50ft +D+0.7501 Length=11.50ft +0.60D Length=11.50ft 1 0.179 0.054 0.90 1 0.663 0.201 1.00 1 0.430 0.'131 1.25 1 0.060 0.018 1 .60 0.0 6.4 0.0 26.2 0.0 21.2 0.0 3.8 0.0 117.0 0.0 130.0 0.0 162.5 0.0 208.0 0.28 1 .16 0.94 102.0 419.4 340.0 61.2 0.0 569.3 0.0 632.5 0.0 790.6 0.0 1,012.0 0.00 0.08 0.00 0.35 0.00 0.28 0.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.'t7 Project Title: Engineer: Project lD: Project Descr: 24 Wood Beam P,roject File: Bsb Burkett - BBU0$24,EoO DESCRIPTION: Loft Joists Overall Maximum Deflections Span Load Combination Max. "-" Defl Localion LoadCombination in Span Max. Location "+" Defl in Span 1 +D+L Vertical Reactions 0.1859 5.792 0.0000 0.000 Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 lvlax uPwalu IIoIII all Luau v9rrulrlulls Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L +D+0.750L +0.60D L Only U,4UC 0.405 0.307 0.099 0.405 0.329 0.059 0.307 U.4UC 0.405 0.307 0.099 0.405 0.329 0.059 0.307 Project Title: Engineer: Project lD: Project Descr: 25 Wood Ledger Frame Engineering DESCRIPTION: Ledger @ CrawlSpace Code Reference. Calculations per NDS, IBC Load Combinations Used :ASCE 7-16 General lnformation Ledger Width Ledger Depth Ledger Wood Specie G : Specific Gravity Bolt Diameter Bolt Spacing Cm - Wet Service Factor Ct - Temperature Factor Cg - Group Action Factor CA-GeometryFactor Load Data 1.50 in 11.250 in Southern Pine 0.55 1t2" in 12.0 in Design Method: ASD (using Service Load Combinations Wood Stress Grade: Southern Pine, No.1: 2"-4" Thick: 12" Fb Allow 1000 psi Fv Allow 175 psi Fyb : Bolt Bending Yield 45,000 psi Concrete as Main Supporting Member Using 6" anchor embedment length in equations. Using dowel bearing strength fixed at 7.5 ksi per NDS Table 11E t I 1.0 1.0 1.0 1.0 Analvtical model uses 100 spans to ensure that all possible combinations' of bolt location.'and load locaUon are.e'valuated. Flnal results are an envelope solutlon. Dead Roof Live Floor Live Snow Wind Seismic Earth Uniform Load... Point Load... Spacing Offset Horizontal Shear 60.0 plf plf lbs 240.0 pll lbs plf plf lbs plf plf lbs plf plf lbs plf plf lbs plf lbs in in plf plf Project Title: Engineer: Project lD: Project Descr: 26 Wood Ledger Project File: Bob Burkett - BBU0524.ecO DESCRIPTION: Ledger @ CrawlSPace DES'GA' EUMMARY Design OK Maximum Ledger Bending LoadCombination... +D+L Moment 25.0 ft-lb fb : Actual Stress 9.482 psi Fb : Allowable Stress 1,000.0 psi Stress Ratio 0.009482 :1 Maximum Ledger Shear LoadCombination... Maximum Bolt Bearing Summary LoadCombination... +D+L Max. Vertical Load 300.0 lbs Bolt Allow Vertical Load 41 1.070 lbs Dowel Bearing Strengths (for specific gravity & bolt diameter) Ledger, Perp to Grain Ledger, Parallel to Grain Supporting Member, Perp to Gre Supporting Member, Parallel to Gr 7,500.0 psi 7,500.0 psi 3,650.0 psi 6,1 50.0 psi +D+L Max. Horizontal Load Bolt Allow Horizontal Load Angle of Resultant Diagonal Component Allow Diagonal Bolt Force Stress Ratio, Wood @ Bolt 0.0 lbs 683.50 lbs 90.0 deg 300.0 lbs 41 1.070 lbs 0.7298 :1 Shear fv : Actual Stress Fv : Allowable Stress Stress Ratio 150.001 lbs 17.778 psi 116.667 psi 0.'1524 :1 Allowable Bolt Note !Refer to NDS Section 11.3 for Bolt Capacity calculation method. Governing Load CombinatitD+L Resutant Load Angle : Theta , 90.0 deS Ktheta = Bolt Capacity - Load Perpendicular to Grain 1.250 Fe theta = 411.070 Bolt Caoacitv - Load Parallel to Grain Fem 7,500.0 Fes 6,'150.0 Fyb 45,000.0 Re 1.220 Rt 4.0 k1 1.591 k2 1.129 k3 1.252 lm :Eq 11.3-1 Rd = 4.0 l= 0.0 lbs ls :Eq1'1.3-2 Rd = 4.0 l= 1,153.13 lbs ll :Eq 11.3-3 Rd = 3.60 Z= 2,038.08 lbs lllm:Eq 11.3-4 Rd = 3.20 z= 2,309.21 tbs llls:Eq11.3-5 Rd= 3.20 z= 683.50 lbs lV : Eq 11.3-6 Rd = 3.20 t= 786.60 lbs Zmin : Basic Design Value = 683.50 lbs Reference design value - Parallelto Grain : Z* CM * CD* Ct * Cg * Cdelta - 683.50 lbs Fem Re k1 lm ls il lllm llls IV Fes Rt k2 Rd= Rd= Rd= Rd= Rd= Rd= 3,650.0 4.0 1.50 5.0 5.0 4.50 4.0 4.0 4.0 45,000.0 1.185 0.0 tbs 547.50 lbs 1,506.32 lbs 1,651.64 lbs 411.070 lbs 536.39 lbs 411.070 tbs Reference design value - Perpendicular to Grain : Z* CM * CD* Ct * Cg * Cdelta = 411'070 lbs 7,500.0 2.055 2.476 Eq 11.3-1 Eq't1.3-2 Eq 11.3-3 Eq 11.34 Eq 11.3-5 Eq 11.3-6 Fyb k3 z= L- L- L- L- z= min : Basic Design Value = Project Title: Engineer: Project lD: Project Descr: i W-ooA geam _- - - eq"",t'n,t::_::::,::: rcS (c)ENERCALC,Ltclss2-2025 DESCRIPTION: Leanto Roof Beam CODE REFERE'VCES Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set:ASCE 7-16 Material Properties 27 Analysis Method : Allowable Stress Design Load Combination : ASCE 7-16 Wood Species : Red Pine Wood Grade : No.2 Beam Bracing : Completely Unbraced Fb Fb Fc Fc Fv Ft +575 psi 575 psi 375 psi 440 psi 1 30 psi 300 psi Prll Perp E : Modulus of Elasticity Ebend- xx Eminbend - xx 900ksi 330ksi Density 27.47 pct o2 8.0 x 10.0 Span = 4.250 ft 8.0 x 10.0 Span = 7.250 ft Service loads entered. Load Faclors will be applied for calculations Beam self weight calculated and added to loading Load for Span Number 1 UniformLoad:D=0.010, Lr=0.020, S=0.040, W=0.0150ksf, TributaryWidth=12.0ft Varying Uniform Load : s= 0.0->0.01560 ksf, Extent = 4.30 -->> 7.250 ft, Trib Width = 12.0 ft Load for Span Number 2 UniformLoad:D=0.010, Lr=0.020, S=0.040, W=0.0150ksf, TributaryWidth=12.0ft Varying Uniform Load : S= 0.01560->0.0380 ksf, Extent = 0.0 ->> 4.250 fl, Trib Width = 12.0 ft DES'GA' SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 310.1 3psi 659.71psi +D+S 7.250ft Span # 1 0.027 in Ratio= 3270>=360 -0.001 in Ratio= 37879>=360 0.034 in Ratio = 2526>=18A '0.002 in Ratio = 22942>=180 0.4741 8.0 x 10.0 0.90 1.00 1.00 1.00 1.000 0.90 1.00 1.00 1.00 1.000 Maximum Shear Stress Ratio Section used for this span fv: Actual F'v Load Combination 0.290 : 1 8.0 x 10.0 43.41 psi 149.50 psi +D+S 6.440 ft Span # 1 Location of maximum on span Span # where maximum occurs Span: 1:SOnly Span: 2:LrOnly Span: 1 : +D+S Span: 2 : +D+0.7501r+0.450W Maximum Forces & Stresses for Load Gombinations SegmentLength SPan# M V CO CLx C, Moment Values shear values Cfu ci cr M fb F'b VtuF'v D Only Length = 7.250 ft Length = 4.250 ft 1 2 0.076 0.076 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 60.6 60.6 0.0 516.6 516.9 0.0 8.9 8.9 Design OK 0.117 0.117 0.00 0.47 0.33 0.0 117.0 117.O Project Title: Engineer: Project lD: Project Descr: 28 Wood Beam Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Lean-to Roof Beam Maximum Forces & Stresses for Load Gombinations Load Combination Segment Length Max Stress Ratros Moment values Snear vatues Span# M V CDCM Cr CLx CF Cfu Ci C M fb F'b V fv F'v +D+Lr Length = 7.250 ft 'l 0.234 0.152 Length = 4.250 ft 2 0.234 0152 +D+S Lensth=7.250ft 1 0.470 0.290 Length = 4.250 tt 2 0.470 0.290 +D+0.7501r Length = 7.250 ft 1 0.197 0.127 Lensth=4.250ft 2 0.197 0.127 +D+0.750S Length=7.250ft 1 0.376 0.233 Length=4.250ft 2 0.375 0.233 +D+0.60W Length = 7.250 ft 1 0.1 19 0.077 Length=4.250ft 2 0.119 0.077 +D+0.7501r+0.450W Length=7.250ft 1 0.194 0.125 Lensth = 4.250 ft 2 0.1 93 0.125 +D+0.750S+0.450W Length=7.250ft 1 0.310 0.193 Length=4.250ft 2 0.309 0.193 +0.60D+0.60W Length=7.250ft 1 0.092 0.060 Length=4.250ft 2 0.092 0.060 +0.60D Lensth=7.250ft I 0.040 0.026 Lensth=4.2s0ft 2 0.040 0.026 Overall Maximum Deflections 1.25 1.25 1.15 1.15 1.15 1.15 1.87 1.87 0.40 0.40 2.75 2.75 0.94 0.94 247.7 247.7 177.5 177.5 284.O 284.0 84.7 84.7 36.3 36.3 0.00 1.31 0.92 0.00 2.32 2.02 0.00 1.10 0.78 0.00 1.85 1.60 0.00 0.85 0.60 0.00 1.39 0.98 0.00 2.14 1.80 0.00 0.66 0.47 0.00 0.28 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 'r.00 1.00 1.00 '1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 716.9 717.6 0.0 659.7 660.3 0.0 716.9 717.6 0.0 659.7 660.3 0.0 917.0 s18.2 0.0 917.0 918.2 0.0 917.0 918.2 0.0 917.0 918.2 0.0 I 17.0 918.2 0.0 24.6 24.6 0.0 43.4 43.4 0.0 20.7 20.7 0.0 34.8 34.8 0.0 16.0 16.0 0.0 26.0 26.0 0.0 40.1 40.1 0.0 12.4 12.4 0.0 5.3 5.3 0.0 162.5 162.5 0.0 149.5 149.5 0.0 162.5 162.5 0.0 149.5 149.5 0.0 208.0 208.0 0.0 208.0 208.0 0.0 208.0 208.0 0.0 208.0 208.0 0.0 208.0 208.0 168.1 1 68.1 3.45 3.45 310.1 310.1 1.57 1.57 141.2 141.2 1.25 1.25 1.60 1.60 1.60 1.60 1.21 1.21 109.0 109.0 1.97 1.97 3.16 3.16 1.60 1.60 1.60 1.60 1.60 1.60 Span Load Combination Max. "-" Defl Location LoadCombination in Span Max. "+" Defl Location in Span '1 +D+S 2 S Only Vertical Reactions 0.0344 0.0014 3.240 2.968 +D+0.7501r+0.450W Support notation : Far left is #1 0.0000 -0.0022 0.000 1.187 Values in KIPS Load Combination Max Upward from Load Combinations Max Upward from Load Cases D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.750Lr+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only S Only W Only Support 1 Support 2 Support 3 1.792 1.395 0.397 1.103 1.792 0.926 1.444 0.715 1.164 1.682 0.556 0.238 0.705 1.395 0.529 5.651 4.622 1.029 2.855 5.651 2.398 4.495 1.851 3.015 5.111 1.439 0.617 1.826 4.622 1.369 1.275 1.146 0.129 0.358 1.27s 0.301 0.989 0.232 0.378 1.066 0.1 B0 0.077 0.229 1.146 0.172 Project Title: Engineer: Project lD: Project Descr: i Wood Beam - Pr"j""-, F1,", aob Brr^"tt - BBU052.it.6 , ffid'rn-=-_-- (arENERe*q[eE'z2ozs DESCRIPTION: Lean-to Collar Tie CODE REFEREA'CES Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set:ASCE 7-16 Material Properties 29 Analysis Method : Allowable Stress Design Load Combination :ASCE 7-16 Wood Species : Red Pine Wood Grade : No.2 Fb+ Fb- Fc - Prll Fc - Perp FV Ft Beam Bracing : Completely Unbraced D(1.029) L(1 .826)w(1.36s) 8.0 x 16-0 Span=11.50fi Applied Loads Beam self weight calculated and added to loading Point Load : D = 1.029, Lr= 1.826, 3= 4.622, W = 1'369 k@4.250ft DES'GTV SUMMARY Maximum Bending Stress Ratio Section used for this span Density 27.47 pcf 2 Service loads entered. Load Factors will be applied for calculations. 575 psi 575 psi 375 psi 440 psi 1 30 psi 300 psi E : Modulus of Elasticity Ebend- xx Eminbend - xx 900 ksi 330 ksi 0.828 1 Maximum Shear Stress Ratio 8.0 X 16.0 Section used for this span fv: Actual F'v Load Combination Location of maximum on span Span # where maximum occurs 0.288 : 1 8.0 x 16.0 43.02 psi 149.50 psi +D+S 0.000 ft Span # 1 "' Sheaavalues fb: Actual F'b Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 544.14psi 657.06psi 4.239ft Span # 1 +D+S 1 459 >=360 0 <360 1 I 54 >=180 0<180 0.095 0 0.120 0 in Ratio = in Ratio = in Ratio = in Ratio = Span nla Span nla S Only +D+S Maximum Forces & Stresses for Load Combinations Load Combination Segment Length SPan # Max Stress Ratios Moment values M v cDcM ct CLx CF Cfu C c M fb F'b V fv F'v Design OK D Only Length=11.50ft +D+Lr Length=11.50ft +D+S Length=11.50ft +D+0.750Lr Length=11.50ft +D+0.750S 0.213 0.394 0.828 0.334 0.076 0.138 0.288 0.117 0.90 1.25 1.15 1.25 0.0 515.0 0.0 713.7 0.0 657.1 0.0 713.7 0.0 0.00 0.76 0.00 1.91 0.00 3.67 0.00 1.62 0.00 0.0 8.9 0.0 22.4 0.0 43.0 0.0 19.0 0.0 0.0 117.0 0.0 162.5 0.0 149.5 0.0 162.5 0.0 109.9 281.4 544.1 238.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1 .00 1.00 1.00 1.00 3.13 8.01 15.48 6.79 Project Title: Engineer: Project lD: Project Descr: 30 DESCRIPTION: Lean-to Collar Tie Maximum Forceg & Stresses for Load Combinations Max Stress Ratios Segment Span# M V CD cM C Mornenf Velues SfearVafues M fb F'b1 CLx CF Cfu c c VfuF.v Length = 1 1.50 ft 1 0.663 0.231 +D+0.60w Length=11.50ft 1 0.205 0.072 +D+0.7501r+0.450W Length=11.50ft 1 0.325 0.113 +D+0.750S+0.450W Length=11.50ft 1 0.541 0.188 +0.60D+0.60w Lensth=11.50ft 1 0.157 0.055 +0.60D Length=11.50ft 1 0.072 0.026 Overall Maximum Deflections 1.15 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 657.1 0.0 911.5 0.0 911.5 0.0 911.5 0.0 911.5 0.0 911.5 2.94 0.00 1.28 0.00 2.01 0.00 3.33 0.00 0.97 0.00 0.45 34.5 0.0 14.9 0.0 23.5 0.0 39.0 0.0 11.4 0.0 5.3 149.5 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 0.0 208.0 12.39 5.32 8.43 14.04 4.07 1.88 435.6 187.1 296.4 493.5 143.1 65.9 Span Load Combination Max. "-" Defl Location LoadCombination in Span lvlax. "+" Defl Location in Span 1 +D+S Vertical Reactions 0.1195 5.372 0.0000 0.000 Support notation : Far left is #1 Values in KIPS Load Combination Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.750Lr+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only S Only W Only Support 1 Support 2 3.703 3.703 2.914 0.789 1.940 3.703 '1.653 2.975 1.307 2.041 3.363 0.991 0.473 1.151 2.914 0.863 z.zzv 2.229 1.708 0.521 1.196 2.229 1.O27 1.802 0.824 1.254 2.029 0.616 0.312 0.675 1.708 0.506 Project Title: Engineer: Project lD: Project Descr: 31 Wood Beam Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Loft Beam CODE REFEREA'CES Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set:ASCE 7-16 Material Properties Analysis Method : Allowable Stress Design Load Combination : ASCE 7-16 Wood Species : Douglas Fir-Larch Wood Grade : No.1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fb+ Fb- Fc - Prll Fc - Perp Fv Ft 1 350 psi 1 350 psi 925 psi 625 psi 1 70 psi 675 psi E : Modulus of Elasticity Ebend- xx 1600ksi Eminbend - xx 580ksi Density 31 .21pcl 8.0 x 12.0 Span = 14.750 ft 2 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.01 0, L = 0.040 ksf, Tributary Width = 12.0 ft DES'GN SUMMARY Maximum Bending Stress Ratio Section used for this span 0.782 1 Maximum Shear Stress Ratio 8.0 X 12,0 Section used for this span 0.366 : 1 8.0 x't2.0 62.14 psi 170.00 psi +D+L 0.000 ft Span # 1 fb: Actual F'b Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.279 in Ratio = 0 in Ratio = 0.361 in Ratio = 0 in Ratio = fv: Actual F'v Load Combination Location of maximum on span Span # where maximum occurs Span: 1:LOnly nla Span: 1 : +D+L nla 1 ,055. 'l 9 psi 1,350.00psi +D+L 7.375ft Span # 1 634 >=360 0 <360 490 >=180 0<180 Maximum Forces & Stresses for Load Combinations Load Combination Segment Length SPan # MAX SITESS KAIIOS M V CDCM CtCLx cfu ci cr M Moment vatues Snear vatues cF fb F'b VfuF'V 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 D Only Length = 14.750ft +D+L Length = 14.750 ft +D+0.7501 Length = 14.750ft +0.60D Length = 14.750f| 1 0.197 1 0.782 1 0.504 1 0.066 0.092 0.366 0.236 0.031 0.90 1.00 1.25 1.60 0.0 14.1 0.0 62.1 0.0 50.1 0.0 8.5 0.0 153.0 0.0 170.0 0.0 212.5 0.0 272.0 3.83 16.88 13.62 2.30 0.0 239.3 1,215.0 0.0 1,055.2 1,350.0 0.0 851.2 1 ,687 .5 0.0 143.6 2,160.0 0.00 0.90 0.00 3.98 0.00 3.21 0.00 0.54 Project Title: Engineer: Project lD: Project Descr: 32 Wood Beam Projeet File: Bob Burkett - BBU0524.ec6 DESCRIPTION: Loft Beam Overall Maximum Deflections Span Load Combination Max. Location Load Combination "-" Defl in Span Max. Location "+" Defl in span 1 +D+L Vertical Reactions 0.3608 7.429 Support notation : Far left is #1 Values in KIPS 0.0000 0.000 Load Combination Support 1 Support 2 Max Upwaro lrom all Loao uonolllons Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L +D+0.750L +0.60D L Only 4,CId 4.578 3.540 1.038 4.578 3.693 0.623 3.540 r+,c / o 4.578 3.540 1.038 4.578 3.693 0.623 3.540 Project Title: Engineer: Project lD: Project Descr: 33 Wood Beam DESCRIPTION: EW Tie Beam Lateral CODE REFEREVCES Project File: Bob Burkett - BBU0524.ec6 Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combination Set: ASCE 7-16 Material Properties Analysis Method : Allowable Stress Design Load Combination :ASCE 7-16 Wood Species : Douglas Fir-Larch Wood Grade : No.1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fb+ Fb- Fc- Fc- Fv Ft Prll Perp 1,350.0 psi 1,350.0 psi 925.0 psi 625.0 psi 170.0 psi 675.0 psi E : Modulus of Elasticity Ebend- xx 1,600.0ksi Eminbend - xx 580.0ksi Density 31.210pcf 8.0 x 12.0 Span = 14.750 ft 2 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : W = 0.01780 ksf, Tributary Width = 10.0 ft DES'GN SUMMARY Maximum Bending Stress Ratio = 0.151: 1 Maximum Shear Stress Ratio Section used for this span 8.0 X 12,0 Section used for this span rb:Actuar = '*""n:|:F**ri"l rv:Actuar Load Combination Load Combination +D+0.60W Location of maximum on span - 7.375ft Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward rransient Deflection 0.233 in Ratio = 760 >=360 span: '1 : w only Max Upward Transient Deflection 0 in Ratio = 0 <360 nla Max Downward Toial Deflection 0.167 in Ratio = 1060>=180 Span: 1 : +D+0'60W Max Upward Total Deflection 0 in Ratio = 0<'180 nta Maximum Forces & Stresses for Load Combinations load eorii6ination -Mex Slress Ratios -Moment values 0.047 :1 8.0 x 12.0 (weak orientation) 12.77 psi 272.0Q psi +D+0.60W 0.000 ft Span # 1 shear values Segment Length Span # M V CD CM ct CLx CF Cfu Ci Cr M fb F'b VfuF'V D Only Length = 14.750 ft +D+0.60W Length = 14.750 fl +D+0.450W Length = 14.750lt +0.60D+0.60w Length = 14.750 ft +0.60D 1 0.044 0.014 0.90 1 0.151 0.047 1.60 1 0.1 19 0.037 1 .60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.000 '1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57 3.47 2.74 0.0 53.0 1,215.0 0.0 325.3 2,160.0 0.0 257.3 2,160.0 0.0 304.1 2,160.0 0.0 0.00 0.13 0.00 0.82 0.00 0.65 0.00 0.76 0.00 0.0 2.1 0.0 12.8 0.0 10.1 0.0 11.9 0.0 0.0 153.0 0.0 272.0 0.0 272.0 0.0 272.0 0.0 Design OK 1 0.141 0.044 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 '1.00 3.24 Project Title: Engineer: Project lD: Project Descr: 34 Wood Beam Project File: Bob Burkeft - BBU0524.ec6 DESCRIPTION: EW Tie Beam Lateral Maximum Forces & Stresses for Load Gombinations Load Combination Segment Length Max Stress Ratros tvtotnen unear vatues Span# M V CD CM ci CLx CF Cfu Ci c M fb F'b VtuF'v Length=14.750ft 1 0.015 0.005 1.60 Overal I Maximum Deflections 1.00 1.00 1.00 1.000 1.00 1.00 1.00 0.34 31.8 2,160.0 0.08 1.2 272.0 Max. Location Load Combination Max. "+" Defl Location in SpanSpanLoad Combination Defl in Span '1 W Only Vertical Reactions 0.2328 7.429 Support notation : Far left is #1 Values in KIPS 0.0000 0.000 Load Combination Support 1 Support 2 Max Upward lrom all Loao uonollons Max Upward from Load Combinations Max Upward from Load Cases D Only +D+0.60w +D+0.450W +0.60D+0.60W +0.60D W Only 1 .313 0.941 1 .313 0.1 53 0.941 0.744 0.880 0.092 1 .313 1 .313 0.941 1 .313 0.1 53 0.941 0.744 0.880 0.092 1 .313 Project Title: Engineer: Project lD: Project Descr: 35 Wood Column Project File: Bob Burkett - BBU0524.ecG DESCRIPTION: SW Columns Code References Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combinations Used:ASCE 7-16 General lnformation Analysis Method Allowable Stress Design End Fixities Top & Bottom Pinned Overall Column Height ( Used for non-slender calculations ) Wood Species Red Pine Wood Grade No.2 Fb + 475 psi Fv Fb - 475 psi Ft Fc - Prll 475 psi Density Fc - Perp 440 psi E : Modulus of Elasticity . . . x-x Bending Basic 900 Minimum 330 Wood Section Name 8x8 Wood Grading/Manuf. Graded Lumber Wood MemberType Sawn Exact Width $ in Allow Stress Modification Factors Exact Depth 8 in Cf or Cv for Bending 1.0 Area 64.0 in^2 Cf or Cv for Compressiot 1'0 lx 341.333 in^4 Cf or Cv for Tension 1.0 ly 341 .333 in^4 Cm : Wet Use Factor 1'0 Ct : Temperature Fact 1.0 Axial Cfu : Flat Use Factor 1.0 Kf : Built-up columns 1.0 900 ksi Use Cr : Repetitive ? No Column Buckling Condition: ABOUT X-X Axis: Lux = 8 ft, Kx = 1.0 ABOUT Y-Y Axis: LuY = 6 1, KY = 1'0 Service loads entered. Load Factors will be applied for calculations. 8ft y-y Bending 900 330 130 psi 325 psi 27.47 pd Applied Loads Column self weight included :97.671 lbs " Dead Load Factor AXIAL LOADS. . . Axial Load at 8.0 ft, D = 0.960, Lr = 1.920, S = 3.840, W = 1'440 k DES'GN SUMMARY Bending & Shear Check Results PAss Max. Axial+Bending Stress Ratio = 0.150s: 1 Load Combination +D+S Governing NDS Forumla Comp Only, fclFc' Location of max.above base 0.0 ft At maximum location values are . , Applied Axial 4.898 k Applied Mx 0.0 k-ft Applied My 0.0 k-ft Fc : Allowable 508.62 Psi Maximum SERVICE Lateral Load Reactions. . Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Top along X-X 0.0 k Bottom along X-X 0.0 k Maximum SERVICE Load Lateral Deflections. .. Along Y-Y 0.0 in at 0.0 ft above base for load combination : n/a Along X-X 0.0 in at 0.0 ft above base for load combination : n/a Other Factors used to calculate allowable stresses . . . Bending Comoression TensionPASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear Load Combination Results 0.0:1 +0.60D 8.0 ft 0.0 psi 208.0 psi Load Combination ce cp Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.750Lr+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D 0.900 1.250 1.150 1.250 1.150 1.600 1.600 1.600 1.600 1.600 0.948 0.924 0.931 0.924 0.931 0.898 0.898 0.898 0.898 0.898 0.04078 0.08480 0.1 505 0.07113 0.1210 0.0440 0.07202 0.1 050 0.03431 0.01453 0.0 ft 0.0 fr 0.0 ft 0.0 ft PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 8.0 ft 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ft 0.0 ft 0.0 ft 0.0 ft 0.0 ft 0.0 ft Project Title: Engineer: Project lD: Project Descr: 36 Wood Column Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: SW Columns Maximum Reactions Note: Only non-zero reactinns are listed Load Combination X-X Axis Reaction @ Base @Top k Y-Y Axis Reaction Axial Reaction @ Base @ Top @ Base My - End Moments k-ft Mx - End Moments @ Base @ Top @ Base @ Top Dbnly -1.058 2.978 4.898 2.498 3.938 1.922 3.'t46 4.586 1.499 0.635 1.920 3.840 1.440 +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60W +D+0.7501r+0.450W +D+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only S Only W Only Maximum Deflections for Load Combinations Load Combination D Only +D+Lr +D+S +D+0.750Lr +D+0.750S +D+0.60w +D+0.7501r+0.450W +D+0.750s+0.450w +0.60D+0.60W +0.60D Lr Only S Only W Only Max. X-X Deflection Distance Max. Y-Y Deflection Distance 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.000ft 0.000ft 0.000ft 0.00oft 0.00oft 0.00oft 0.00oft 0.00oft 0.000ft 0.000ft 0.000ft 0.00oft 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000ft 0.000ft 0.000 ft 0.000 ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000fr 0.000fl Project Title: Engineer: Project lD: Project Descr: 37 Wood Column Project Filer Bob Burkett - 88u0524.€eo DESCRIPTION: SW Columns Sketches +X.cod {6I 8x8 8.0 in Project Title: Engineer: Project lD: Project Descr: 38 Wood Column Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: lnterior Columns Code References Calculations per NDS 2018, IBC 2018, CBC 2019, SDPWS 2015 Load Combinations Used: ASCE 7-16 General lnformation Analysis Method Allowable Stress Design End Fixities Top & Bottom Pinned Overall Column Height ( Used for non-slender calculalians ) Wood Species Red Pine Wood Grade No.2 Fb + 475.0 psi Fv Fb - 475.0 psi Ft Fc - Prll 475.0 psi DensitY Fc - Perp 440.0 psi E : Modulus of Elasticity . . . x-x Bending Basic 900.0 Minimum 330.0 Wood Section Name 8x8 Wood Grading/Manuf. Graded Lumber Wood Member Type Sawn Exact Width 8.0 in Allow Stress Modification Factors Exact Depth 8.0 in Cf or Cv for Bending 1.0 Area 64.0 in^2 Cf or Cv for Compressiot 1'0 lx 341 .333 in^4 Cf or Cv for Tension 1.0 ly 341 .333 in^4 Cm : Wet Use Factor 1'0 Ct : Temperature Fact 1.0 Axial Cfu : Flat Use Factor 1.0 Kf : Built-up columns 1.0 900.0 ksi Use Cr : Repetitive ? No Column Buckling Condition: ABOUT X-X Axis: Lux = 10 ft, Kx = 1 .0 ABOUT Y-Y Axis: Luy = 16 ft, KY = 1.6 Service loads entered. Load Factors will be applied for calculations. 17.25 ft 130.0 psi 325.0 psi 27.470 pcf y-y Bending 900.0 330.0 Applied Loads Column self weight included : 210.603 lbs " Dead Load Factor AXIALLOADS... Roof: Axial Load at 17.250ft, D = 2.040, Lr= 4.080, S = 8.160, W = 3.060 k Loft: Axial Load at 17.25O ft, D = 0.960, L = 3.840 k Drift: Axial Load at 17.250 ft, S = 1.642 k DES'GA' SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.4387 : 1 Load Combination +D+0.750L+0.750S Governing NDS Forumla Comp Only, fc/Fc' Locaiion of max.above base 0.0 ft At maximum location values are . . Applied Axial '13.442k Applied Mx 0.0 k-ft Applied My 0.0 k-ft Fc :Allowable 482.027 psi Maximum SERVICE Lateral Load Reactions. . Top along Y-Y 0.0 k Bottom along Y-Y Top along X-X 0.0 k Bottom along X-X Maximum SERVICE Load Lateral Deflections. . . Along Y-Y 0.0 in at 0.0 ft above base for load combination : n/a Along X-X 0.0 in at 0.0 ft above base for load combination : n/a Other Factors used to calculate allowable stresses . . . Bending Compression 0.0 k 0.0 k PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear Load Combination Results 0.0 : 'l +0.60D 17.250ft 0.0 psi 208.0 psi Tension Load Combination ce cp Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location D Only +D+L +D+Lr +D+S +D+0.750Lr+0.750L +D+0.7501+0.750S +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750s+0.450w 0.900 1.000 1.250 1.150 1.250 1.150 1.600 1.600 '1 .600 0.913 0.901 0.870 0.882 0.870 0.882 0.823 0.823 0.823 PASS PASS PASS PASS PASS PASS PASS PASS PASS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PASS PASS PASS PASS PASS PASS PASS PASS PASS 0.1286 0.2575 0.2206 0.4218 0.2769 0.4357 0.1261 0.2631 0.3703 0.0 ft 0.0 ft 0.0 ft 0.0 ft 0.0 fr 0.0 ft 0.0 ft 0.0 ft 0.0 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft Project Title: Engineer: Project lD: Project Descr: 39 W"Od CO;U,,," Project File: Bob Burkett - BBU0524.ecO II'l-"".ilrFr,rluffi*- --- -- Enffi@ DESGRIPTION: lnterior Columns Load Combination Results Load Combination ce cp Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location +0.60D+0.60W +0.60D Maximum Reactions 1.600 1.600 0.09402 0.04814 PASS PASS 0.0 ft 0.0 ft .823 .823 0 0 0.0 PASS 17.250 ft 0.0 PASS 17.250 ft Note: Only non-zero reactions are listed Load Combination X-X Axis Reaction k @ Base @ Top Y-Y Axis Reaction Axial Reaction @ Base @ Top @ Base My - End Moments k-ft Mx - End Moments @ Base @ Top @ Base @ Top D Only +D+L +D+Lr +D+S +D+0.7501r+0.7501 +D+0.7501+0.750S +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only L Only S Only W Only Maximum Deflections for Load Gombinations Load Combination D Only +D+L +D+Lr +D+S +D+0.7501r+0.7501 +D+0.7501+0.750S +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750s+0.450w +0.60D+0.60W +0.60D Lr Only L Only S Only W Only 3.211 7.051 7.291 13.01 3 9.1 51 13.442 5.047 10.528 14.819 3.762 1.926 4.080 3.840 9.802 3.060 Max. X-X Deflection Distance Max. Y-Y Deflection Distance 0.0000 n 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.00oft 0.00oft 0.00oft 0.000ft 0.000ft 0.000ft 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000ft 0.000fr 0.000ft 0.000fr 0.000ft 0.000ft 0.000ft 0.000ft 0.000 ft 0.000 ft 0.000 ft 0.000ft 0.000ft 0.000ft 0.000ft Project Title: Engineer: Project lD: Project Descr: 40 DESCRIPTION: lnteriorColumns Sketches n*ill z: {1 +X.=q @ I !a : 8x8 I tn Project Title: Engineer: Prolect lD: Project Descr: 41 Wood Golumn Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: EW Columns Code References Calculations per NDS 2018, IBC 20'18, CBC 2019, SDPWS 2015 Load Combinations Used:ASCE 7-16 General lnformation Analysis Method Allowable Stress Design End Fixities Top & Bottom Pinned Overall Column Height ( Used for non-slender calculations ) Wood Species Red Pine Wood Grade No.2 Fb + 475.0 psi Fv Fb - 475.0 psi Ft Fc - Prll 475.0 psi DensitY Fc - Perp 440.0 psi E : Modulus of Elasticity . . . x-x Bending Basic 900.0 Minimum 330.0 Wood Section Name 8x8 Wood Grading/Manuf. Graded Lumber Wood MemberType Sawn Exact Width 8,0 in Allow Stress Modification Factors Exact Depth 8.0 in Cf or Cv for Bending 1.0 Area 64.0 in^2 Cf orCvforCompressiot 1'0 lx 341 .333 in^4 Cf or Cv for Tension 1.0 ly 341.333 in^4 Cm : Wet use Factor 1'0 Ct : Temperature Fact 1.0 Axial Cfu : Flat Use Factor 1.0 Kf : Built-up columns 1.0 900.0 ksi Use Cr : Repetitive ? No Column Buckling Condition: ABOUT X-X Axis: Lux = 10 ft, Kx = 1 .0 ABOUT Y-Y Axis: Luy = 16 ft, KY = 1.9 Service loads entered. Load Factors will be applied for calculations. 17.25 ft 130.0 psi 325.0 psi 27.470 pcf y-y Bending 900.0 330.0 lied Loads Column self weight included : 210.603 lbs * Dead Load Factor AXIALLOADS... Roof: Axial Load at 17.250 ft, D = 1.360, Lr=2.720, S = 5.440, W = 2.040 k Loft: Axial Load at 17 .25O ft, D = 0.480, L = 1 '920 k Drift: Axial Load at 17.250 ft, S = 1.095 k DES'GN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.2783:1 Load Combination +D+S Governing NDS Forumla Comp Only, fc/Fc' Location of max.above base 0.0 ft At maximum location values are , . Applied Axial 8.586 k Applied Mx 0.0 k-ft Applied My 0.0 k-ft Fc:Allowable 482.027 Psi Maximum SERVICE Lateral Load Reactions . . Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Top along X-l 0.0 k Bottom along X-X 0.0 k Maximum SERVICE Load Lateral Deflections. . , Along Y-Y 0.0 in at 0.0 ft above base for load combination : n/a Along X-X 0.0 in at 0.0 ft above base for load combination : n/a Other Factors used to calculate allowable stresses . . . Bending Comoression TensionPASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear Load Combination Results 0.0:1 +0.60D 17 .250 ft 0.0 psi 208.0 psi Load Combination ce cp Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location D Only +D+L +D+Lr +D+S +D+0.750Lr+0.750L +D+0.750L+0.750S +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750s+0.450w 0.900 1.000 1.250 1.150 1.250 1.150 1.600 1.600 1.600 0.08212 0.1450 0.1444 0.2783 0.1674 0.2720 0.08183 0.161 1 0.2326 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PASS PASS PASS PASS PASS PASS PASS PASS PASS 0.913 0.901 0.870 0.882 0.870 0.882 0.823 0.823 0.823 PASS PASS PASS PASS PASS PASS PASS PASS PASS 0.0 ft 0.0 ft 0.0 ft 0.0 ft 0.0 fr 0.0 ft 0.0 ft 0.0 ft 0.0 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 17.250 ft 't7.250 ft 17.250 ft 17.250 ft 17.250 ft Project Title: Engineer: Project lD: Project Descr: 42 Wood Golumn Project File: Bob Burkett - BBU0524.ec6 DESCRIPTION: EW Columns Load Combination Results Load Combination ce cp Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location +0.60D+0.60W +0.60D Maximum Reactions 1.600 1.600 0.823 0.823 0.06133 0.03075 PASS PASS 0.0 ft 0.0 ft 0.0 PASS 17.250 ft 0.0 PASS 17.250 ft Note: Only non-zero reactions are lisied Load Combination Dbnly +D+L +D+LT +D+S X-X Axis Reaction k @ Base @ Top Y-Y Axis Reaction Axial Reaction @ Base @ Top @ Base My - End Moments k-ft @ Base @ Top Mx - End Moments @ Base @ Top 2.051 3.971 4.771 8.586 5.531 8.392 3.275 6.449 9.310 2.454 1.230 2.720 1.920 6.535 2.040 +D+0.7501r+0.7501 +D+0.7501+0.750s +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750s+0.450w +0.60D+0.60w +0.60D Lr Only L Only S Only W Only Maximum Deflections for Load Gombinations Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance D Only +D+L +D+Lr +D+S +D+0.7501r+0.7501 +D+0.7501+0.750S +D+0.60W +D+0.7501r+0.7501+0.450W +D+0.7501+0.750S+0.450W +0.60D+0.60W +0.60D Lr Only L Only S Only W Only 0.0000 in 0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.0000 i 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.00oft 0.00oft 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000 in 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft 0.000ft n n n n n n n n 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in Project Title: Engineer: Project lD: Project Descr: 43 Wood Golumn Projeot Frle:Bob Burkett DESCRIPTION: EW Columns Sketches ffiil8 t:t a !I +X.=q @ 8x8 8.0 in Project Title: Engineer: Project lD: Project Descr: 44 Restrained Retaining Wall DESCRIPTION: Crawl Space Foundation Code References Project File: Bob Burkett - BBU0524.ec6 Calculations per IBC 2018, ACI 318-14 Criteria Soil Data Allow Soil Bearing = 1,500.0 psf Equivalent Fluid Pressure Method At-Rest Heel Pressure Passive Pressure Soil Density Footingl lSoil Frictior Soil height to ignore for passive pressure Retained Height Wall height above soil Total Wall Height Top Support Height Slope Behind Wall = Height of Soil over Toe = = 2.333 ft= 0.670 ft = 3.003 ft 3.0 fi 0 6in 32.0 psflft 0.0 psf/ft 250.0 psf/ft 110 pcf 0.4 psf 12 in Surcharge Loads Uniform Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel - PSf >>>Used To Resist Sliding & Overturning Surcharge Over Toe - PSf Used for Sliding & Overturning Axial Load Applied to Stem Lateral Load = #|ft ...Height to ToP = ft ...Height to Bottom = ft Load Type = Wind (W) (Strength Level) Wind on Exposed Stem = 0.00 psf (Sirength Level) Adjacent Footing Load Wind acts left-to-right toward retention side. Poisson's Ratio Kh Soil Density Multiplier = 0.2 g Added seismic per unit area Axial Dead Load = Axial Live Load = Axial Load Eccentricity = Eailh Pressure Seismic Load 462.0 lbs 1,945.0 lbs in Footino Width Eccenlricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil at Back of Wall 60000 psi 3000 psi lbs ft in ft Line Load ft 0.3 0.0 psf @ Base of Wall Desion Summarv Goncrete Stem Construction Total Bearing Load ...resultant ecc. ACI Factored @ Toe = ACI Factored @ Heel = Footing Shear @ Toe Footing Shear @ Heel = Allowable Reaction at Top = Reaction at Bottom = 3,367.96 lbs = 0.0 in Thickness = 8.00 in Wall Weight = 100.0 Psf Stem is FIXED to top of footing Fy fc Soil Pressure @ Toe = 1,347.18 Soil Pressure @ Heel = 1,347.18 Allowable Soil Pressure Less Than Allowable psf OK psf OK psf Mmax Between Top & Base@ Top Support 1,927.82 psf 1,927.82 psf 3.003 psi OK 11.2B1 psi OK 82.158 psi 10.119 lbs 166.624 lbs Design Height Above Ftg Rebar Size Rebar Spacing Rebar Placed at Rebar Depth 'd' Stem OK 3.0 ft#4 12.00 in Center 4.0 in Stem OK 1.506 ft #4 12.00 in Center 4.0 in Stem OK 0.00 ft#4 12.00 in Edge 5.750 in Design Data fblFg + falFa Mu....Actual 0.006 21.753ft# 3,423.0ft# 0.011 54.989ft+ 4,998.0ft# 't21.5481bs 1.762psi 82.1 58 psi CalcsSliding Lateral Sliding Force = 166.624 lbs Vertical component of active lateral soil pressure lS NOT considered in the calculation of soil bearing Load Factors Building Code Dead Load Live Load Earth, H Wind, W Seismic, E Mn " Phi.....Allowable Shear Force @ this height = Shear.....Actual Shear.....Allowable 0.0 ft+ 3,423.0 ft-# '17.790 lbs 0.3706 psi 82.158 psi 1.200 1.600 1.600 1.000 1.000 Project Title: Engineer: Project lD: Project Descr: 45 Restrained Retaining Wall Project File: Bob Burkett - BBU0524.ecO Toe Width Heel Width Total Footing Width Footing Thickness fc = 3,000 Footing Concrete Min. As % Cover @ Top = = .91666666 ft = -58333333 = 2.50 = 12.0 in Toe = 1,927.82 = 809.95 = 103.354 = 707 = 3.003 = 82.158 DESCRIPTION: Crawl Space Foundation Footlng Strengths & Dlmenslons Footing Deslgn Results Factored Pressure Mu': Upward Mu': Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Heel 1,927.82 Other Acceptable Sizes & Spacings: roe:#4 @ 9.26 in -or- #4@ 9.25 in, #5@ 14.35 in, #6@ 18 in, #7@ 18 in, f Heel:# 4 @ 9.26 in -or- #4@ 9.25 in, #5@ 14.35 in, #6@ 18 in, #7@ 18 in, f Min footing T&S reinf Area 0.65 in2 Min footing T&S reinf Area per foot 0.26 in2 tft lf one layer of horizontal bars: lf two layers of horizontal bars: #4@ 9.26in #4@18.52in #5@ 14.35 in #5@ 28.70 in #6@20.37 in #6@40.74in -605 11.281 82.158 psf ft+ ft+ ft4 psi psi psi Fy = DensitY = 60000 psi 1 50 pcf = 0.0018 Zin @Btm.= 3in Summary of Forces on Footi nq : Slab is NOT providins sliding,stem is FIXED at footinq Forces acting on footing for sliding & soil pressure... Sliding Forces Load & Moment Summary For Footing : For Soil Pressure Calcs Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed. Vertical component of active lateral soil pressure lS NOT considered in the calculation of Sliding Resistance. Moment @ Top of Footing Applied from Stem Surcharge Over Heel 0.0 Adjacent Footing Load = 0.0 lbs Axial Dead Load on Stem = 2,407.0 lbs Soil Over Toe = 50.4'17 lbs Surcharge Over Toe = 0.0 lbs Stem Weight = 300.30 lbs Soil Over Heel = 235.2441bs Footing Weight = 375.0 lbs Stem Shear @ Top of Footing = Heel Active Pressure Sliding Force 75.968 lbs 90.656 0.; 0.0 ft 1.250ft 0.4583 ft 0.0 ft 1.250 ft 2.042ft 1.250ft -34.368fr+ 0.0 0.0ft+ 3,008.75ft# 23.108ft4 0.0ft+ 375.375ft+ 480.290ft+ 468.750ft+ 166.624 lbs Total Vertical Force =3,367.96 lbs Base Moment - 4,321.91ft4 46 Projoct Titlo: Engineer: PtoieetlD: ProJeet DeS-en DESGRIPTIONI Grawl Spae Foundation Robar Lap & Embedmcnt Lengths lnformation Project Title: Engineer: Project lD: Project Descr: 47 Restrained Retaining Wall Project File: Bob Burkett - BBU0524.ecF DESCRIPTION: Crawl Space Foundation Lateral Restraint S" Concrete wl tA @12 3'-0" 8'Concrete wl lt4 @ 12" S" Concrete wl lA @ 12 #4@9.26" @ Toe #4@9.26" @ Heel 6. 2'-4" 1'.-o. a 1"l',-7', 2'-6" 3'-0" 48 Project Title: Engineer: Project lD: Project Descr: DESCRIPTION: Crawl Spaee Foundation Lie{etrRs*thaht 1,0.{s# DL.F4M,LIFtr.Q@, Eg€$gT t*- tffiu# . .& rds flr# aD&,Fi s 49 Foundation:Soil Bearing Capacity = 1500 PSF Cont. Footing at B/S100: Reaction = 93L0 Req. Footing Size = 9310 Actual Footing Size = 2 (Reaction from page 42) # #/1500 3 psf = ft x2 = 6.21 72.00 SF SF > 6.21SF -> Goodftx Pad at C/S100: Reaction = 14819 Req. Footing Size = 1481.9 Actual Footing Size = 3.5 (Reaction from page 39) # #/1500 3.5 psf 9.88 12.25 SF SF > 9.88SF -> Goodftx NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION 77 50 Table L2.2A Lag Screw Reference Withdrawal Values' W1 Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Len of thread in main member shall not include the of the red 12.2.1.1 Specific Gravlty, G2 0.73 0.71 0.68 0.67 0.58 0.55 0.51 0.50 0.49 0.47 0.46 0.44 0.43 0.42 0.41 0.40 0.39 0.38 0.37 0.36 0.35 0.31 withdrawal design values, W, for lag sorew shall be multiplied by all applicable ad-iustment factors (see r 1.3.1). 2. Specific gravity, G, shall be determined in accordance with Table 12.3.34. ad-justment factors (see Table I1.3.1) to obtain adjusted withdrawal design values, W'. w = l-380 G5/2 D (12.2-3) (b) The nail or spike reference withdrawal design value, W, in lbs/in. of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. w = 465 G3/2 D (12.2-4) (c) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- Screw Diameter D t-Lt4" 1327 1273 lt93 lt67 940 868 775 752 730 686 664 621 600 579 559 538 518 498 479 460 441 367 drawal design value in lbs/in. of fastener penetration from 12.2.3.\a or 12.2.3.1b shall be rnultiplied by the length of fastener penetration, p,, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in. of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E . Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 1 1.3.1) to obtain adjusted withdrawal design values, w'. w = 1800 G2 D (12.2-5) Io€nlFI{ !lrt.rt o{mzmFog Copyright @ American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL 5/8"314"7/8"lrt 1-1l8"51t6"3/8"7n6"l12"l/4" 1123 1077 r 009 987 795 734 656 636 6t7 s80 s62 525 508 490 413 455 438 422 405 389 373 3ll 1226 tt76 I 103 1078 869 802 716 69s 674 634 6t3 574 554 535 516 497 479 461 443 425 407 339 604 579 543 531 428 395 3s3 342 .J3Z 312 302 283 273 264 254 245 236 227 2t8 209 200 167 668 640 600 587 473 437 390 378 367 345 JJ+ 312 302 29r 281 271 261 251 241 231 222 185 789 757 709 694 559 516 461 447 434 408 395 369 357 344 332 320 308 296 285 273 262 2t8 905 868 813 796 64t 592 528 s13 498 467 4s3 423 409 395 381 367 353 340 326 313 300 250 1016 974 913 893 719 664 s93 576 559 525 508 475 4s9 443 428 412 397 381 367 352 3Jt 281 397 381 357 349 281 264 232 225 zt8 205 199 186 179 173 167 161 155 149 143 137 132 110 469 450 422 4t3 332 307 274 266 258 242 235 220 2t2 205 198 190 183 t76 t69 163 156 130 538 516 484 473 381 352 314 305 296 278 269 252 243 235 226 218 210 202 t94 186 t79 149 DOWET-TYPE FASTENERSLO2 51 Table 12G BOLTS: Reference Lateral Desi$n Values, 2rlot Double Shear (three member) Gonnectionsl'2 for sawn lumber or SCL main member wilh1-/4" ASTM A 36 steel side plates i Thickness 1-3t4 2-112 J- UZ o Eo .co tm in. zt zL lbs. lbs. 1-1t2 730 910 1 100 1280 1460 290 320 350 370 410 850 1 070 1280 1490 1710 330 370 410 430 4 61 530 580 1520 1 830 213A 1410 2060 2560 2990 341 0 2840 3770 670 740 810 860 950 1120 1220 1290 1420 5-114 5-1t2 2840 1280 3770 1350 t-lz 2060 1120 2840 1480 3770 1840 4850 2030 9-1t2 2840 1480 3770 1870 4850 2350 11-112 4850 2350 1. Tabllated lateral design values, Z, for bolted connections shall be multiplied by all applicable adjustrnent f'actors (see Table I I .3. I ). str:ength, F", o187,000 psi for ASTM ,436 steel. Copyright @ American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AN4ERICAN WOOD COUNCIL EAQYaagq&E E^e8:rocJ,tEo66Ag ;, ) a a Jfi-agg co o.JI ir _ao)6 S-oOfil o=ooa a u-z _^ o.! I(gtL-. olOrEll o o)oor q5 OEll o)OI .= Lr 0)c iL <v c5so O?Id C) U) Eg ?E('Dg YNOqoooilootr q)o.5Eo-(!- -E FroEi;o=Y.x;o>d cO (g J i! _a ql -oOllt ooo 2r lbs. zx lbs. zx zL lbs. lbs. zrztl lbs.lbs. zrzn lbs. lbs zn lbs. zL lbs. zx lbs.lbs z, o -o E c) =,opo ts in. o) c) E .Go = m D in. zx zr lbs. lbs. zn zr lbs. lbs. zn zr lbs. lbs. 900 1130 1 350 1 580 1800 380 420 460 500 540 880 1 100 1320 1544 1760 370 410 450 490 530 780 970 1170 1 360 '1560 310 350 370 414 444 760 290 950 330 1140 360 1330 390 1520 420 1150 1440 1730 2020 2310 550 610 660 720 774 '1050 470 1310 530 1580 590 1840 630 2100 680 1030 460 1290 520 1550 560 1800 600 2060 650 970 1210 1450 1690 1 930 420 470 520 550 600 114 1t2 5/8 314 7!8 1 1410 1 760 2110 2460 2810 730 810 890 960 1020 910 1 130 '1360 1590 1820 360 400 430 47A 510 890 1 110 1 330 1 550 1770 340 380 420 460 490 1230 550 '1530 610 1840 680 2140 740 2450 794 1200 530 '1500 600 1800 660 2110 700 2410 750 1 130 490 1410 550 1690 600 1970 640 2250 700 1 050 1310 1 580 1840 2100 450 490 540 580 630 1 030 1290 1 540 1800 2060 43C 4BC 53C 57C 61C 1t4 1t2 5/B 3t4 718 1 1640 2050 2460 2874 3280 850 940 1 040 1120 1 190 1 350 1 680 2020 2350 2690 640 710 770 840 890 1 590 2010 2410 2820 3220 700 780 860 920 1000 1500 640 1880 700 2250 770 2630 830 3000 900 1470 61C 1840 69C 2200 75C 2570 81C 2944 88C 1 300 1620 1 950 227A 2590 510 580 620 680 730 1270 1 580 1 900 2210 2530 49C 55C 60c 66C 70c 1t2 518 314 7t8 1 1870 2740 3520 4100 4690 1210 1 340 1480 1600 1700 1720 2400 2880 3360 3840 910 1020 1110 1200 1280 '1650 2190 2630 3060 3500 794 880 980 't050 1 130 1640 2150 2580 301 0 3440 760 860 940 1010 1080 114 1 530 2230 3080 3600 4110 860 960 1 050 1 130 1234 '1450 2110 2720 3180 3630 720 810 870 950 1020 1430 68C 2090 77C 2660 B4C 3100 924 3540 98C 1720 2510 3480 4630 5380 100 420 550 680 790 1 650 2410 3340 4290 4900 1 030 1230 1370 1470 1580 I O+U 2390 3320 4210 4810 1 010 1200 1 310 1410 1510 1 590 2330 3220 3940 4510 970 1 090 1210 1290 1400 1 540 2260 3120 3680 4204 890 980 1 080 1 160 1260 1t4 1t2 5/8 3t4 718 1 1870 2740 3800 5060 6520 1240 1720 2070 2240 2380 2110 2920 3880 4990 1 170 1 300 1420 1520 2090 1144 2890 1264 3840 1380 4930 M7A 2410 1420 3340 1890 4440 2210 5720 2360 2390 1400 3320 1850 4410 2110 5670 2260 2330 1340 3220 1780 4280 1930 s510 2100 2260 3120 4150 5330 1280 161 0 1750 1890 2230 3090 4110 5280 127Q 1 580 I 700 1840 1t4 5/B 314 7t8 1 2740 1720 3800 2290 5060 2930 6520 3570 2510 1510 3480 2000 4630 2530 5960 2680 2390 1400 3320 1850 4410 2210 5670 2370 2330 1340 3220 1780 4280 2020 s510 2200 2260 1280 3120 1690 4150 1830 5330 1980 2230 3090 4110 5280 1274 1 650 1780 1930 2110 2920 3880 4990 1170 1 360 1490 '1600 2090 2890 3840 4930 114C 132C 1444 1544 114 5/B 3t4 7t8 1 2740 1720 3800 2290 5060 2930 6520 3640 2510 1510 3480 2000 4630 2570 5960 2810 2410 1420 3340 1890 4440 2310 5720 2480 2330 1340 3220 1780 4280 2260 5510 2840 2260 1280 3120 1690 4154 2160 5330 2700 2230 1274 3090 '1670 4110 2134 5280 2630 2110 1170 2920 1530 3880 1960 4990 2180 2090 1144 2890 1500 3840 1930 4930 2100 2740 1720 3800 2290 5060 2930 6520 3640 2510 1510 3480 2000 4630 2570 5960 3180 2410 1420 3340 1890 4440 2410 5720 3000 2390 1400 3320 1850 4410 2360 5670 2940 1t4 5/8 314 7t8 1 3090 1670 4110 2130 5280 2660 2920 153L 3880 196C 4990 244C 2890 1500 3840 1930 4930 2404 3480 2000 4630 2570 5960 3180 3340 1890 4440 2410 5720 3000 3320 1850 4410 2360 5670 2940 3220 1780 4280 2260 5510 2840 3120 169C 4150 216C 5330 2700 114 3t4 718 1 3800 2290 5060 2930 6520 3640 4440 2410 5720 3000 4410 2360 5670 2940 4280 2260 5510 2840 4150 2164 5330 2700 4110 2130 5280 2660 3880 196C 4990 244C 3840 1930 4930 2404114 718 1 5060 2930 6520 3640 4630 2570 5960 3180 4990 2440 4930 24005960 3180 5720 3000 5670 2940 5510 2840 5330 2700 5280 26601t416520 3640 aoo c) a C9b'1Eotsilooz DOWEL.TYPE FASTENERS106 52 ;. ..,) Table 12J LAG SCREWS: Reference Lateral Desi$n Values, Z,tot Sin$le Shear (two member) Gonnectionsl'2'3'4 for sawn lumber or SCL with both members of identical specific gravity (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) o go>c PEal G=0.46 Douglas Fi(S) t. 1/2 5/A 3t4 Zn Zs! Zn[ Zr lbs. lbs. lbs. lbs....:. : : r'!.: i.t 110 140 100 90 100 90 110 130 160 160 90 100 100 110 100 150 180 180 110 130 130 100 1'10 80 90 80 90 80 90 100 120 '150 1-1 t4 1-1t2 110 120 '110 '110 130 120 100 120 't10 140 150 190 190 100 130 120 160 190 260 360 430 '110 140 140 180 2'lo 290 400 430 470 110 140 140 200 220 300 420 500 '150 190 190 300 370 530 730 970 't230 150 190 190 300 380 570 780 101 0 't10 140 140 200 250 360 4AO 610 760 110 140 140 200 250 390 510 650 100 130 120 1-3t4 180 200', 270'. 360 470 2-1t2 150 190 190 300 380 610 920 1 190 1450 3-112 150 190 190 300 380 610 920 1280 l. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table I 1.3. l). 2. Tabulated lateral design values, Z, are for "reduced body dianeter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to rvood fibers; screw penetration, p, into the main merrber equal to 8D; screw bending yield strengths, Fr6,of 70,000 psi for D = l/4", 60,000 psi for D : 5116", and 45,000 psi for D >3/8". 3. Where ihe lag scre. penetration, p, is less than 8D but not less than 4D. tabulated laleral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 fol the reduced penetratiol'l. less than 4D. See 12.1.4.6 for minimum length of penetration. p,",". Copyright @ American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL 720 110 110 100 140 140 130 140 140 120 200 200 1801 250 250 220. 360 390 32Or 460 580 410 580 770 500 100 130 120 180 220 340 490 570 680 110 '110 140 140 140 140 204 200 250 250 390 390 550 580 660 780 G=0.5o Doriolas Fir-Larch G=0.49 Douolas Fir-Larch(N) G=0.55 Mixed Maple Southern Pine G=0.67 Red Oak 21 Zd Z^L ZL lbs lhs lbs. lbs. zn zsr z,"L zL lbs. lbs. lbs. lbs. 3o a) 6 D in. o E.q zl zd z,,r zL lbs. lbs. lbs. lbs. zr zd zn! z! lbs. lbs. lbs. lbs. 90 100 100 90 1 '10 110 80 100 90 120 '150 150 80 90 90 120 140 150 90 100 90 90 110 110 1t4 5t16 3/A 110 130 130 114 124 124 150 170 140 110 '130 130 '130 '150 160 90 110 110 100 't20 110 90 100 100 100 'l 10 110 90 '100 100 130 150 160 90 110 100 90 '100 90 130 150 160 90 100 100 100 110 110 120 130 124 160 190 't90 120 't40 130 130 140 140 140 160 170 100 110 '110 110 120 120 100 110 100 1t4 5t16 3/B 100 100 100 140 170 170 100 't10 110 110 120 '120 140 160 170 100 110 110 '110 120 120 90 100 100 150 '180 180 '110 120 120 120 130 130 110 120 1 '10 'v4 5t16 3t8 't80 2'to 210 't40 150 140 140 160 160 130 MA 130 '110 120 120 '110 140 140 110 120 1'10 150 '190 190 120 140 130 120 150 150 120 130 120 160 210 210 150 190 200 120 130 120 't20 't40 140 110 120 '1 10 1t4 c/ to 3/8 180 230 230 140 170 160 140 170 170 144 160 160 110 140 130 '110 140 140 110 130 120 150 200 200 120 '150 1s0 120 150 150 120 140 140 160 210 210 150 200 200 120 140 140 120 't40 140 110 130 130 1t4 5116 3/8 '180 230 230 140 170 170 140 170 170 144 160 160 lso 110 1 10 1 10 200 140 140 130 200 140 140 '130 310 '190 210 180 390 220 260 200 550 310 380 270 760 430 510 370 1010 470 650 470 12AO 500 790 500 160 210 210 320 410 600 830 1080 1360 120 150 150 220 250 340 470 560 600 120 150 150 230 290 420 560 710 870 120 140 140 200 230 3'10 410 540 600 120 140 140 200 220 310 440 490 530 150 200 200 310 390 560 770 1020 1290 120 1 10 140 130 140 1 30 210 180 274 200 380 280 510 380 660 490 810 530 1t4 5/16 3/8 7t16 1t2 5t8 3/4 7ta 1 180 230 230 360 460 700 950 1240 1 550 140 170 170 260 320 500 660 830 1010 144 160 '160 244 280 370 490 630 780 140 170 170 260 310 410 550 720 800 150 200 200 310 390 610 830 1070 1340 120 140 140 21Q 240 330 450 570 610 120 140 140 214 274 424 550 700 850 1 '10 130 130 190 220 294 390 510 610 150 110 110 '11C 200 140 140 130 200 140 140 130 310 210 210 190 390 24A 260 224 600 32O 410 290 820 440 540 380 1060 550 680 490 1320 590 830 590 1/4 5/16 3/A 7t16 112 5t8 3/4 7t8 1 180 230 230 360 460 740 1 030 1320 1 630 140 170 170 320 500 720 890 1070 MA 160 160 240 250 400 520 650 790 140 170 170 260 320 440 580 740 910 160 210 210 320 410 660 890 1 1s0 1420 120 150 150 230 270 360 480 630 700 120 120 150 140 150 140 230 210 290 250 440 320 600 430 750 550 910 670 150 120 120 110 200 140 140 't30 200 140 140 '130 31o 210 210 190 390 270 270 240 640 390 420 350 960 500 610 450 1280 630 830 550 1550 770 990 660 150 200 200 310 390 OJU 950 1260 1520 110 140 140 210 260 410 600 810 970 1'to 140 140 210 260 380 490 620 750 11C 130 130 190 234 340 430 530 640 160 210 210 320 410 670 1010 1370 1 660 120 150 150 230 290 430 550 690 830 120 150 150 230 290 440 650 880 1 080 120 140 140 210 250 390 490 600 720 1/4 5i16 3/8 7t16 1t2 5/8 3t4 7ta 1 180 230 230 360 460 740 1110 1 550 1 940 140 170 170 260 320 500 740 1 000 1270 MA 160 160 240 290 450 610 740 860 140 170 170 260 320 500 680 830 980 11C '130 130 '190 238 360 510 624 724 150 1 10 200 140 200 140 310 210 390 260 630 4'lO 950 580 132Q 700 1730, 430 110 140 140 214 260 410 600 810 1 040 160 210 210 320 410 670 '1010 1400 1 R30 120 150 150 230 290 440 650 800 930 120 150 '150 230 290 MO 650 880 1 120 120 140 140 210 250 390 560 710 810 120 120 1 1C 140 140 13C 140 140 13C 210 210 19C 270 270 24C 420 420 36C 600 610 52C 720 830 64C 850 1060 74C 150 200 200 310 390 640 960 1 340 't740 'll4 5t16 3/8 7t'16 1t2 5t8 3t4 7lA 1 180 230 230 360 460 740 1110 1 550 2020 140 170 170 260 320 500 740 1 000 't270 144 160 160 240 290 450 650 860 140 170 170 260 320 500 740 990 1140 10't DOWEL-TYPE FASTENERS108 53 Table 12K LAG SCREWS: Reference Lateral Design Values, 2rfiot Single Shear (two member) Gonnectionsl'2'3'4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for l"<t/4") or ASTM A 36 steel side plate (for l,=t/4") (tabutated lateral desi$n values are calculated based on an assumed length of lag screw penetration, p, into the maln member equal to 8D) | :'- ' l.i i:; i i j':. I .:'l l:: ' a...' oo P=at o'o o a yb ilo(tz ts zn zL lbs. (14 0.075 0.1 05 120 130 '130 130 160 '170 140 170 100 110 '1'10 140 180 180 100 120 150 180 170 200 200 180 230 230 320 390 580 840 1140 1460 180 230 230 360 440 640 900 1200 1530 90 100 100 90 110(12 (11 o.'t20 0.'134 (10 0.1 79 (7 gage) 0.239 (3 gage) 1t4 l. Tabulatedlatelaldesignvalues,Z,shallbemultipliedbyallapplicableadjustmentfactors(seeTable1l.3.l). 2. Tabulated later.al design values, Z, are for "reduced body dianeter" lag screws (see Appendix Table L2) inserled in side grain with screw axis perpendicular to rvood fibers: screw penetration, p, into the main mernber equal to 8D: dowel bearing strengths, F., of61,850 psi forASTM ,{653, Clade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F,6, of 70,000 psi fbr D = I /4", 60,000 psi for D - 5/ 16", and 45,000 psi for D >3/8 ". 3. Where the lag screw penetratiou, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or latet'al design values shall be calcr"rlated using the provisions of 12.3 for the reduced penetration 4. Thelengthoflagscrewpenetlation,p,notincludingthelengthofthetaperedtip,E(seeAppendixTableL2),ofthelagscrewintothemainmembershall notbe less tlran 4D. See l2.l .4.6 for minimunr length of penetration. p,,,'n. Copyright @ American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. 120 140 140 190 230 320 440 570 710 't20 140 140 210 280 350 470 600 740 a iz tl oooor .qtoEtl oOI r d, iIodr oa E*Pc?; ll oo{r QYo a9lt dr b E.0iiAEY- 3 F 3E5'ii H f,eaouo55 oocaiio- "o> E o=3 c oJ .{I "?*o='ilooo c 6J ,+u aj^o='il o-ooa LOi!o ci Eiloot zr zL lhs lbs zn zL lbs lbs. zr zL lbs lbs. zr zL lbs. lbs. zn zL lbs. lbs. zn zL lbs. lbs. D in E; 3-eeEii5 zn zL lbs. lbs. zt zL lbs. lbs. zr zL lbs. lbs. 140 100 180 ',t20 180 120 100 120 120 140 180 180 130 170 170 90 110 '110 130 170 170 90 1'10 '100 150 110 190 130 200 130 150 190 190 110 130 130 150 100 190 130 190 120 114 5t16 3/8 170 130 220 160 220 160 160 120 200 140 200 140 100 110 110 140 170 1R0 '160 1 10 190 130 200 130 '150 '190 190 110 130 120 150 190 190 110 120 120 140 180 180 '100 110 '110 1t4 5i '16 3tA 180 140 230 170 ?30 160 '170 130 210 150 210 140 160 120 200 't40 200 140 160 200 200 120 140 '130 160 190 190 110 130 120 150 '180 180 100 120 110 '150 180 180 '100 120 110 120 140 140 170 210 210 170 200 210 120 140 140 160 120 200 140 200 130 160 1 10 190 130 200 130 1t4 5/1 6 3/8 190 '150 230 170 240 170 180 130 210 150 220 150 170 120 200 140 210 140 '160 200 200 120 130 130 160 200 200 110 130 130 150 't90 190 1'10 120 120 100 120 120 150 180 190 1t4 5i16 3/B 200 150 240 180 ?40 170 180 140 220 160 220 150 130 1s0 140 180 210 220 130 140 140 170 210 210 190 220 ?20 '130 150 140 190 220 220 130 150 140 '180 210 210 120 130 130 170 200 210 120 130 '130 200 230 240 150 '160 '160 200 230 240 140 '160 160 190 140 230 150 230 150 114 5i 16 3la 220 170 260 190 270 190 210 150 240 170 250 170 130 160 160 220 2& 360 500 650 810 190 250 250 350 420 630 910 1230 1590 180 230 240 330 400 600 860 1170 '1500 120 150 140 2W 240 330 450 590 740 180 120 230 150 230 140 330 200 400 230 590 330 850 450 1 160 590 1480 730 210 150 270 180 270 180 380 240 460 294 680 400 980 560 1330 730 1710 910 210 260 270 370 450 680 970 1320 1700 150 '180 180 244 400 550 710 890 200 140 260 170 260 170 360 230 444 270 660 380 950 530 1280 690 '1650 860 190 250 250 350 430 640 920 1250 1600 't40 160 160 220 240 500 650 820 1t4 5116 3/8 7t16 1t2 518 314 7tB 1 180 220 220 290 340 490 670 880 1 100 240 300 310 420 510 770 1110 1510 1 940 220 160 280 190 280 190 390 260 470 3@ 710 430 1020 590 1390 780 1780 960 180 120 230 150 240 140 360 210 450 260 650 360 920 480 '1220 620 1550 760 210 150 270 180 270 180 4n 260 510 320 744 U0 1050 590 1400 750 1780 930 200 140 260 170 270 170 414 250 500 310 72A 420 1020 570 1360 720 1730 900 200 250 260 390 480 700 990 1320 1 680 140 170 '160 240 290 400 540 690 850 130 160 160 230 290 400 530 680 840 190 250 250 390 480 690 980 1310 1660 120 150 150 220 270 370 490 630 770 180 230 240 370 460 bbu 930 1240 1570 1t4 5/1 6 3/B 7t16 1t2 5t8 314 7t8 1 240 180 310 220 320 220 480 320 580 390 850 530 1200 730 1600 930 2040 1150 160 200 190 280 340 470 640 820 1000 220 280 290 440 540 780 1 100 1470 1870 150 180 180 270 320 440 600 770 950 210 270 280 420 520 750 1060 1410 1 800 AIVERICAN WOOD COUNCIL